Skip to main content
Log in

Application of an Image-Based Model of the Elastic Modulus of Porous Thermal Barrier Coatings

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The elastic modulus of plasma-sprayed thermal barrier coatings (TBCs), which have been utilized for gas turbine engine components at elevated temperatures, has been investigated using a proposed model. The main purpose of this paper is to explore the alterations in porous TBC microstructure that lead to alterations in its mechanical properties, including elastic modulus. This paper investigates the effect of different types of defects, i.e., nonflat porosity, microcracks and interlamellar porosity, on the elastic modulus of porous TBC materials. The first part of this paper quantitively studies the microstructural characterization of plasma-sprayed TBCs by means of an image analysis approach. The second part of this paper predicts the elastic modulus of plasma-sprayed TBCs based on microstructural changes, i.e., defects. The volumetric fraction of different types of defects and their shapes and orientations are also taken into account. It is found that both microcracks and interlamellar porosity exhibit a crucial optimization on the elastic modulus of porous TBCs, while nonflat porosity shows a lesser effect on the elastic modulus. The predicted data of the proposed model show relatively good agreement with FEA model results and experimentally measured results. These simulation results could help to further the understanding of the impact of porous TBC microstructural alterations on elastic modulus.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

copyright 2021 Elsevier)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

copyright 2021 Taylor & Francis)

Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J.R. Brandon, R. Taylor, Surf. Coat. Tech. 39-40, 143 (1989)

    Google Scholar 

  2. B.Y. Zhang, G.H. Meng, G.J. Yang, C.X. Li, C.J. Li, Appl. Surf. Sci. 397, 125 (2017)

    Article  CAS  Google Scholar 

  3. B.Y. Zhang, G.J. Yang, C.X. Li, C.J. Li, Appl. Surf. Sci. 406, 99 (2017)

    Article  CAS  Google Scholar 

  4. P. Scardi, M. Leoni, L. Bertamini, Surf. Coat. Tech. 76–77, 106 (1995)

    Article  Google Scholar 

  5. C. Funke, J.C. Mailand, B. Siebert, R. Vaβen, D. Stöver, Surf. Coat. Tech. 94–95, 106 (1997)

  6. S. Ahmaniemi, P. Vuoristo, T. Mäntylä, Mater. Sci. Eng. A 366, 175 (2004)

    Article  Google Scholar 

  7. N.M. Yanar, G.H. Meier, F.S. Pettit, Scripta Mater. 46, 325 (2002)

    Article  CAS  Google Scholar 

  8. L. Wang, Y. Wang, X.G. Sun, J.Q. He, Z.Y. Pan, C.H. Wang, Mater. Design 35, 505 (2012)

    Article  CAS  Google Scholar 

  9. L. Wang, Y. Wang, X.G. Sun, J.Q. He, Z.Y. Pan, Y. Zhou, P.L. Wu, Mater. Design 32, 36 (2011)

    Article  Google Scholar 

  10. Y. Dong, C.A. Wang, J. Zhou, Z. Hong, J. Eur. Ceram. Soc. 32, 2213 (2012)

    Article  CAS  Google Scholar 

  11. G.R. Li, L.S. Wang, Appl. Surf. Sci. 483, 472 (2019)

    Article  CAS  Google Scholar 

  12. K. Ma, J. Zhu, H. Xie, H. Wang, Surf. Coat. Tech. 235, 589 (2013)

    Article  CAS  Google Scholar 

  13. A. Kulkarni, Z. Wang, T. Nakamura, S. Sampath, A. Goland, H. Herman, J. Allen, J. Ilavsky, G. Long, J. Frahm, R.W. Steinbrech, Acta Mater. 51, 2457 (2003)

    Article  CAS  Google Scholar 

  14. S. Wei, W. Fu-chi, F. Qun-bo, H. Dan, M. Zhuang, Surf. Coat. Tech. 204, 3376 (2010)

    Article  Google Scholar 

  15. D.P.H. Hasselman, J. Am. Ceram. Soc. 45, 452 (1962)

    Article  CAS  Google Scholar 

  16. Z. Hashin, J. Appl. Mech. Trans. ASME 29, 143 (1960)

    Article  Google Scholar 

  17. N. Ramakrishnan, V.S. Arunachalam, J. Am. Ceram. Soc. 76, 2745 (1993)

    Article  CAS  Google Scholar 

  18. F. Kroupa, J. Therm. Spray Techn. 16, 84 (2007)

    Article  CAS  Google Scholar 

  19. W. Pabst, E. Gregorová, G. Tichá, J. Eur. Ceram. Soc. 26, 1085 (2006)

    Article  CAS  Google Scholar 

  20. W. Pabst, G. Tichá, E. Gregorová, E. Týnová, Ceram. Silikaty 49, 77 (2005)

    CAS  Google Scholar 

  21. P. Scardi, M. Leoni, F. Cernuschi, A. Figari, J. Am. Ceram. Soc. 84, 827 (2001)

    Article  CAS  Google Scholar 

  22. F. Cernuschi, S. Ahmaniemi, P. Vuoristo, T. Mäntylä, J. Eur. Ceram. Soc. 24, 2657 (2004)

    Article  CAS  Google Scholar 

  23. Z. Wang, A. Kulkarni, S. Deshpande, T. Nakamura, H. Herman, Acta Mater. 51, 5319 (2003)

    Article  CAS  Google Scholar 

  24. J. Zhai, X. Song, Y. Yu, H. Wu, X. Pan, Surf. Eng. 35, 512 (2019)

    Article  CAS  Google Scholar 

  25. G.J. Yang, Z.L. Chen, C.X. Li, C.J. Li, J. Therm. Spray Techn. 22, 1294 (2013)

    Article  CAS  Google Scholar 

  26. R.S. Ghai, K. Chen, N. Baddour, Coatings 9, 101 (2019)

    Article  CAS  Google Scholar 

  27. A. Moteb, K. Chen, Ceram. Int. 46, 21939 (2020)

    Article  CAS  Google Scholar 

  28. L. Baiamonte, F. Marra, G. Pulci, J. Tirillò, F. Sarasini, C. Bartuli, T. Valente, Surf. Coat. Tech. 277, 289 (2015)

    Article  CAS  Google Scholar 

  29. B.K. Jang, H. Matsubara, Mater. Lett. 59, 3462 (2005)

    Article  CAS  Google Scholar 

  30. D.N. Boccaccini, H.L. Frandsen, S. Soprani, M. Cannio, T. Klemensø, V. Gil, P.V. Hendriksen, J. Eur. Ceram. Soc. 38, 1720 (2018)

    Article  CAS  Google Scholar 

  31. S. Saeidi, K.T. Voisey, D.G. McCartney, J. Therm. Spray Techn. 20, 1231 (2011)

    Article  CAS  Google Scholar 

  32. K. Ma, H. Xie, J. Zhu, H. Wang, Surf. Coat. Tech. 253, 58 (2014)

    Article  CAS  Google Scholar 

  33. A. Fregeac, F. Ansart, S. Selezneff, C. Estournès, Ceram. Int. 45, 23740 (2019)

    Article  CAS  Google Scholar 

  34. W. Pabst, E. Gregorová, J. Eur. Ceram. Soc. 34, 3195 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Prince Sattam Bin Abdulaziz University. I would also thank Professor Kuiying Chen (Senior Research Officer, National Research Council Canada) for his endless advice and useful comments on this research paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moteb Alotaibi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

This section involves images that have been utilized in modeling analysis as well as images obtained by ImageJ for measuring the porosity content of different TBC systems. These images have been provided for reader interest (Figs.

Fig. 16
figure 16

Representation of different types of porosities of YSZ heat treated for 50 h characterized by ImageJ software

16,

Fig. 17
figure 17

Representation of different types of porosities of YSZ heat treated for 200 h characterized by ImageJ software

17,

Fig. 18
figure 18

Representation of different types of porosities of YSZ heat treated for 500 h characterized by ImageJ software

18,

Fig. 19
figure 19

copyright 2021 Elsevier)

SEM micrograph cross-sections of four TBC systems (Reprinted from [23] with permission:

19,

Fig. 20
figure 20

Representation of different types of porosities of F&C powder coating characterized by ImageJ software

20,

Fig. 21
figure 21

Representation of different types of porosities of HOSP powder coating characterized by ImageJ software

21,

Fig. 22
figure 22

Representation of different types of porosities of sintered powder characterized by ImageJ software

22,

Fig. 23
figure 23

Representation of different types of porosities of sol–gel powder characterized by ImageJ software

23,

Fig. 24
figure 24

Representation of different types of porosities of coating 'a' characterized by ImageJ

24,

Fig. 25
figure 25

Representation of different types of porosities of coating 'b' characterized by ImageJ software

25,

Fig. 26
figure 26

Representation of different types of porosities of coating 'c' characterized by ImageJ software

26,

Fig. 27
figure 27

Representation of different types of porosities of coating 'd' characterized by ImageJ software

27).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alotaibi, M. Application of an Image-Based Model of the Elastic Modulus of Porous Thermal Barrier Coatings. Met. Mater. Int. 28, 1794–1808 (2022). https://doi.org/10.1007/s12540-021-01084-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-01084-6

Keywords

Navigation