Abstract
Process optimization of additively manufactured Ti–6Al–4V alloy is an important aspect of the production of engineered, high-performance parts for the aerospace and medical industries. In this study, the microstructural evolution and mechanical properties of direct energy deposition processed Ti–6Al–4V alloy were investigated using different processing parameters. Experimental analyses revealed that the line energy density corresponding to the processing parameters of the direct energy deposition process influences the properties of additively manufactured Ti–6Al–4V alloy. First, an optimal line energy density limits the incidence and size of voids resulting from a lack of fusion to enhance both alloy strength and ductility. Second, an excessively high energy density induces the coarsening of prior-β grains to impair both alloy strength with the Hall–Petch relationship and alloy ductility due to the plastic deformation instability caused by the limited number of grains. These results indicate that both the extent of fusion and prior-β grain size affect the mechanical properties of additively manufactured Ti–6Al–4V alloy. Moreover, the results demonstrate the utility of the line energy density-based approach in determining the optimal processing parameters for realizing high-performance materials.
Graphic abstract

This is a preview of subscription content,
to check access.







Data availability
The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.
References
M. Peters, J. Hemptenmacher, J. Kumpfert, C. Leyens, Structure and properties of titanium and titanium alloys, in Titanium and Titanium Alloys: Fundamentals and Applications, ed. by C. Leyens, M. Peters (Wiley-VCH, Weinheim, 2003), pp. 1-36
M.J. Donachie, Titanium: A Technical Guide, 2nd edn. (ASM International, Materials Park, OH, 2000)
R.R. Boyer, Mater. Sci. Eng. A 213, 103 (1996)
Z.M. Wang, E.O. Ezugwu, J. Mater. Process. Tech. 68, 262 (1997)
G.M. Karthik, H.S. Kim, Met. Mater. Int. 27, 1 (2021)
D. Herzog, V. Seyda, E. Wycisk, C. Elmmelmann, Acta Mater. 117, 271 (2016)
W.E. Frazier, J. Mater. Eng. Perform. 23, 1917 (2014)
C. Zhong, J. Liu, T. Zhao, T. Schopphovben, J. Fu, A. Gasser, J.H. Schleifenbaum, Appl. Sci. 10, 764 (2020)
I. Gibson, D. Rosen, B. Strucker, Directed energy deposition processes, in Additive Manufacturing Technologies (Springer, New York, NY, 2015), pp. 245-268
S.-K. Rittinghaus, J. Schmelzer, M.W. Rackel, S. Hemes, A. Vogelpoth, U. Hecht, A. Weisheit, Materials 13, 4392 (2020)
S. Tumuluri, P. Murugeshan, R.K. Mishra, V.V. Subrahmanyam, J. Fail. Anal. Prev. 17, 788 (2017)
T. Bhardwaj, M. Shukla, N.K. Prasad, C.P. Paul, K.S. Bindra, Met. Mater. Int. 26, 1015 (2020)
D.-K. Kim, W. Woo, E.-Y. Kim, S.-H. Choi, J. Alloy. Compd. 774, 896 (2019)
S.M.J. Razani, F. Berto, Adv. Eng. Mater. 21, 1900220 (2019)
C.L.A. Leung, S. Marussi, R.C. Atwood, M. Towrie, P.J. Withers, P.D. Lee, Nat. Commun. 9, 1355 (2018)
W. Hofmeister, M. Griffith, JOM 53, 30 (2001)
M. Simonelli, Y.Y. Tse, C. Tuck, Mater. Sci. Eng. A 616, 1 (2014)
J. Yang, H. Yu, J. Yin, M. Gao, Z. Wang, X. Zeng, Mater. Design 108, 308 (2016)
I.-S. Kim, J.M. Oh, S.W. Lee, J.-T. Yeom, J.-K. Hong, C.H. Park, T. Lee, J. Mater. Res. Technol. 12, 304 (2021)
R.M. Mahamood, E.T. Akinlabi, M. Shukla, S. Pityana, J. Manuf. Sci. Eng. 135, 064502 (2013)
S. Sahoo, K. Chou, Addit. Manuf. 9, 14 (2016)
R.M. Mahamood, E.T. Akinlabi, S.A. Akinlabi, Lasers Manuf. Mater. Process. 2, 43 (2014)
R.M. Mahamood, E.T. Akinlabi, Int. J. Adv. Manuf. Technol. 91, 2419 (2017)
X. Wu, J. Liang, J. Mei, C. Mitchell, P.S. Goodwin, W. Voice, Mater. Design 25, 137 (2004)
X. Tan, Y. Kok, Y.J. Tan, M. Descoins, D. Mangelinck, S.B. Tor, K.F. Leong, C.K. Chua, Acta Mater. 97, 1 (2015)
J. Lin, Y. Lv, Y. Liu, Z. Sun, K. Wang, Z. Li, Y. Wu, B. Xu, J. Mech. Behav. Miomed. 69, 19 (2017)
D. Cheng, J. Zhang, T. Shi, G. Li, J. Shi, L. Lu, G. Fu, Opt. Laser Technol. 135, 106640 (2021)
J. Li, H. Ren, C. Liu, S. Shang, Materials 12, 1321 (2019)
M.H. Farshidianfar, F. Khodabakhshi, A. Khajepour, A.P. Gerlich, Mater. Sci. Eng. A 803, 140483 (2021)
J.I. Yoon, J.G. Kim, J.M. Jung, D.J. Lee, H.J. Jeong, M. Shahbaz, S. Lee, H.S. Kim, Korean J. Met. Mater. 54, 231 (2016)
Z. Xiang, M. Yin, G. Dong, X. Mei, G. Yin, Results Phys. 9, 939 (2018)
A. Moridi, A.G. Demir, L. Caprio, A.J. Hart, B. Previtali, B.M. Colosimo, Mater. Sci. Eng. A 768, 138456 (2019)
J.W. Foltz, B. Welk, P.C. Collins, H.L. Fraser, J.C. Williams, Metall. Mater. Trans. A 42, 645 (2011)
Y. Kakinuma, M. Mori, Y. Oda, T. Mori, M. Kashihara, A. Hansel, M. Fujishima, CIRP Ann. 65, 209 (2016)
M. Seifi, M. Gorelik, J. Waller, N. Hrabe, N. Shamsaei, S. Daniewicz, J.J. Lewandowski, JOM 69, 439 (2017)
B. Brenken, E. Barocio, A. Favaloro, V. Kunc, R.B. Pipes, Addit. Manuf. 25, 218 (2019)
Acknowledgements
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2020R1A4A3079417). This work was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (2018R1A5A6075959). It was further supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2021R1A2C3006662). H.S.K. acknowledges the great support funded by Ministry of Trade, Industry and Energy of Korea (20000495).
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Lee, Y., Kim, E.S., Park, S. et al. Effects of Laser Power on the Microstructure Evolution and Mechanical Properties of Ti–6Al–4V Alloy Manufactured by Direct Energy Deposition. Met. Mater. Int. 28, 197–204 (2022). https://doi.org/10.1007/s12540-021-01081-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12540-021-01081-9