Skip to main content
Log in

Effects of Laser Power on the Microstructure Evolution and Mechanical Properties of Ti–6Al–4V Alloy Manufactured by Direct Energy Deposition

Metals and Materials International Aims and scope Submit manuscript

Cite this article

Abstract

Process optimization of additively manufactured Ti–6Al–4V alloy is an important aspect of the production of engineered, high-performance parts for the aerospace and medical industries. In this study, the microstructural evolution and mechanical properties of direct energy deposition processed Ti–6Al–4V alloy were investigated using different processing parameters. Experimental analyses revealed that the line energy density corresponding to the processing parameters of the direct energy deposition process influences the properties of additively manufactured Ti–6Al–4V alloy. First, an optimal line energy density limits the incidence and size of voids resulting from a lack of fusion to enhance both alloy strength and ductility. Second, an excessively high energy density induces the coarsening of prior-β grains to impair both alloy strength with the Hall–Petch relationship and alloy ductility due to the plastic deformation instability caused by the limited number of grains. These results indicate that both the extent of fusion and prior-β grain size affect the mechanical properties of additively manufactured Ti–6Al–4V alloy. Moreover, the results demonstrate the utility of the line energy density-based approach in determining the optimal processing parameters for realizing high-performance materials.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. M. Peters, J. Hemptenmacher, J. Kumpfert, C. Leyens, Structure and properties of titanium and titanium alloys, in Titanium and Titanium Alloys: Fundamentals and Applications, ed. by C. Leyens, M. Peters (Wiley-VCH, Weinheim, 2003), pp. 1-36 

    Google Scholar 

  2. M.J. Donachie, Titanium: A Technical Guide, 2nd edn. (ASM International, Materials Park, OH, 2000)

    Book  Google Scholar 

  3. R.R. Boyer, Mater. Sci. Eng. A 213, 103 (1996)

    Article  Google Scholar 

  4. Z.M. Wang, E.O. Ezugwu, J. Mater. Process. Tech. 68, 262 (1997)

    Article  Google Scholar 

  5. G.M. Karthik, H.S. Kim, Met. Mater. Int. 27, 1 (2021)

    Article  CAS  Google Scholar 

  6. D. Herzog, V. Seyda, E. Wycisk, C. Elmmelmann, Acta Mater. 117, 271 (2016)

    Article  CAS  Google Scholar 

  7. W.E. Frazier, J. Mater. Eng. Perform. 23, 1917 (2014)

    Article  CAS  Google Scholar 

  8. C. Zhong, J. Liu, T. Zhao, T. Schopphovben, J. Fu, A. Gasser, J.H. Schleifenbaum, Appl. Sci. 10, 764 (2020)

    Article  CAS  Google Scholar 

  9. I. Gibson, D. Rosen, B. Strucker, Directed energy deposition processes, in Additive Manufacturing Technologies (Springer, New York, NY, 2015), pp. 245-268

  10. S.-K. Rittinghaus, J. Schmelzer, M.W. Rackel, S. Hemes, A. Vogelpoth, U. Hecht, A. Weisheit, Materials 13, 4392 (2020)

    Article  CAS  Google Scholar 

  11. S. Tumuluri, P. Murugeshan, R.K. Mishra, V.V. Subrahmanyam, J. Fail. Anal. Prev. 17, 788 (2017)

    Article  Google Scholar 

  12. T. Bhardwaj, M. Shukla, N.K. Prasad, C.P. Paul, K.S. Bindra, Met. Mater. Int. 26, 1015 (2020)

    Article  CAS  Google Scholar 

  13. D.-K. Kim, W. Woo, E.-Y. Kim, S.-H. Choi, J. Alloy. Compd. 774, 896 (2019)

    Article  CAS  Google Scholar 

  14. S.M.J. Razani, F. Berto, Adv. Eng. Mater. 21, 1900220 (2019)

    Article  CAS  Google Scholar 

  15. C.L.A. Leung, S. Marussi, R.C. Atwood, M. Towrie, P.J. Withers, P.D. Lee, Nat. Commun. 9, 1355 (2018)

    Article  CAS  Google Scholar 

  16. W. Hofmeister, M. Griffith, JOM 53, 30 (2001)

    Article  CAS  Google Scholar 

  17. M. Simonelli, Y.Y. Tse, C. Tuck, Mater. Sci. Eng. A 616, 1 (2014)

    Article  CAS  Google Scholar 

  18. J. Yang, H. Yu, J. Yin, M. Gao, Z. Wang, X. Zeng, Mater. Design 108, 308 (2016)

    Article  CAS  Google Scholar 

  19. I.-S. Kim, J.M. Oh, S.W. Lee, J.-T. Yeom, J.-K. Hong, C.H. Park, T. Lee, J. Mater. Res. Technol. 12, 304 (2021)

    Article  CAS  Google Scholar 

  20. R.M. Mahamood, E.T. Akinlabi, M. Shukla, S. Pityana, J. Manuf. Sci. Eng. 135, 064502 (2013)

    Article  Google Scholar 

  21. S. Sahoo, K. Chou, Addit. Manuf. 9, 14 (2016)

    CAS  Google Scholar 

  22. R.M. Mahamood, E.T. Akinlabi, S.A. Akinlabi, Lasers Manuf. Mater. Process. 2, 43 (2014)

    Article  Google Scholar 

  23. R.M. Mahamood, E.T. Akinlabi, Int. J. Adv. Manuf. Technol. 91, 2419 (2017)

    Article  Google Scholar 

  24. X. Wu, J. Liang, J. Mei, C. Mitchell, P.S. Goodwin, W. Voice, Mater. Design 25, 137 (2004)

    Article  CAS  Google Scholar 

  25. X. Tan, Y. Kok, Y.J. Tan, M. Descoins, D. Mangelinck, S.B. Tor, K.F. Leong, C.K. Chua, Acta Mater. 97, 1 (2015)

    Article  CAS  Google Scholar 

  26. J. Lin, Y. Lv, Y. Liu, Z. Sun, K. Wang, Z. Li, Y. Wu, B. Xu, J. Mech. Behav. Miomed. 69, 19 (2017)

    Article  CAS  Google Scholar 

  27. D. Cheng, J. Zhang, T. Shi, G. Li, J. Shi, L. Lu, G. Fu, Opt. Laser Technol. 135, 106640 (2021)

    Article  CAS  Google Scholar 

  28. J. Li, H. Ren, C. Liu, S. Shang, Materials 12, 1321 (2019)

    Article  CAS  Google Scholar 

  29. M.H. Farshidianfar, F. Khodabakhshi, A. Khajepour, A.P. Gerlich, Mater. Sci. Eng. A 803, 140483 (2021)

    Article  CAS  Google Scholar 

  30. J.I. Yoon, J.G. Kim, J.M. Jung, D.J. Lee, H.J. Jeong, M. Shahbaz, S. Lee, H.S. Kim, Korean J. Met. Mater. 54, 231 (2016)

    Article  CAS  Google Scholar 

  31. Z. Xiang, M. Yin, G. Dong, X. Mei, G. Yin, Results Phys. 9, 939 (2018)

    Article  Google Scholar 

  32. A. Moridi, A.G. Demir, L. Caprio, A.J. Hart, B. Previtali, B.M. Colosimo, Mater. Sci. Eng. A 768, 138456 (2019)

    Article  CAS  Google Scholar 

  33. J.W. Foltz, B. Welk, P.C. Collins, H.L. Fraser, J.C. Williams, Metall. Mater. Trans. A 42, 645 (2011)

    Article  CAS  Google Scholar 

  34. Y. Kakinuma, M. Mori, Y. Oda, T. Mori, M. Kashihara, A. Hansel, M. Fujishima, CIRP Ann. 65, 209 (2016)

    Article  Google Scholar 

  35. M. Seifi, M. Gorelik, J. Waller, N. Hrabe, N. Shamsaei, S. Daniewicz, J.J. Lewandowski, JOM 69, 439 (2017)

    Article  Google Scholar 

  36. B. Brenken, E. Barocio, A. Favaloro, V. Kunc, R.B. Pipes, Addit. Manuf. 25, 218 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2020R1A4A3079417). This work was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (2018R1A5A6075959). It was further supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2021R1A2C3006662). H.S.K. acknowledges the great support funded by Ministry of Trade, Industry and Energy of Korea (20000495).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyokyung Sung or Jung Gi Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y., Kim, E.S., Park, S. et al. Effects of Laser Power on the Microstructure Evolution and Mechanical Properties of Ti–6Al–4V Alloy Manufactured by Direct Energy Deposition. Met. Mater. Int. 28, 197–204 (2022). https://doi.org/10.1007/s12540-021-01081-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-01081-9

Keywords

Navigation