Skip to main content
Log in

Laser Surface Texturing in Powder Bed Fusion: Numerical Simulation and Experimental Characterization

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Laser surface texturing can improve the surface properties of the metallic components. In this work, surface texturing has been carried in a powder bed fusion of Inconel 718 (IN718) rather than material removal process. A 2D finite element method (FEM) has been built to simulate the thermo-fluidic dynamics of surface texturing, incorporating the phase-field method in the preplaced IN718 powder. The temperature and induced velocity fields have been predicted using transient heat transfer and fluid flow based on the conservation of mass, momentum, and energy in the melt pool. Furthermore, the roles of driving forces such as Marangoni force, recoil pressure, and thermal buoyancy force on the melt pool behavior have been evaluated. Micro-textures were developed using laser on the powder bed by using different scanning patterns, such as line, circle, hatch and convex dimple. The effect of process parameters (pitch distance, number of pulses and number of layers) on the surface hydrophobicity were evaluated by measuring the contact angle, where the convex dimple texture exhibited the maximum contact angle. The hydrophobicity was affected by the ripples (2nd level of roughness) on the surface, which increased with an increase in number of pulses.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The data are available from the corresponding author upon reasonable request.

References

  1. D.S. Patel, A. Singh, K. Balani, J. Ramkumar, Surf. Coat. Tech. 349, 816 (2018)

    Google Scholar 

  2. T. Bhardwaj, M. Shukla, N.K. Prasad, C.P. Paul, K.S. Bindra, Met. Mater. Int. 26, 1015 (2020)

    Google Scholar 

  3. Z. Lian, J. Xu, P. Yu, Z. Yu, Z. Wang, H. Yu, Met. Mater. Int. 26, 1603 (2020)

    Google Scholar 

  4. D.A. Del Cerro, G.R.B.E. Römer, A.J. Huis In’t Veld, Phycs. Proc. 5, 231 (2010)

  5. I. Etsion, J. Tribol. 127, 248 (2005)

    Google Scholar 

  6. S. Bauer, P. Schmuki, K.V.D. Mark, J. Park, Prog. Mater. Sci. 58, 261 (2013)

    Google Scholar 

  7. D.G. Coblas, A. Fatu, A. Maoui, M. Hajjam, P. I. Mech. Eng. J-J. Eng. 229, 3 (2015)

    Google Scholar 

  8. A. Marmur, Biofouling 22, 107 (2006)

    Google Scholar 

  9. A. Arslan, H.H. Masjuki, M.A. Kalam, M. Varman, R.A. Mufti, M.H. Mosarof, L.S. Khuong, M.M. Quazi, Crit. Rev. Solid State Mater. Sci. 41, 447 (2016)

    Google Scholar 

  10. S. Sharma, V. Mandal, S.A. Ramakrishna, J. Ramkumar, J. Manuf. Process. 39, 282 (2019)

    Google Scholar 

  11. M. Tang, V. Shim, Z.Y. Pan, Y.S. Choo, M.H. Hong, J. Laser Micro Nanoen. 6, 6 (2011)

    Google Scholar 

  12. A.M. Kietzig, S.G. Hatzikiriakos, P. Englezos, Langmuir 25, 4821 (2009)

    Google Scholar 

  13. P. Bizi-Bandoki, S. Benayoun, S. Valette, B. Beaugiraud, E. Audouard, Appl. Surf. Sci. 257, 5213 (2011)

    Google Scholar 

  14. V. Mandal, S. Sharma, J. Ramkumar, Advances in simulation, product design and development, ed. by M.S. Shunmugam, M. Kanthababu (Springer, Singapore, 2020), p. 241

  15. S.K. Sharma, K. Biswas, J.D. Majumdar, Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00884-6

    Article  Google Scholar 

  16. X. Wang, Y. Zhang, L. Wang, J. Xian, M. Jin, M. Kang, Appl. Phys. A 123, 51 (2017)

    Google Scholar 

  17. J. Zhou, H. Shen, Y. Pan, X. Ding, Opt. Lasers Eng. 78, 113 (2016)

    Google Scholar 

  18. M. Simonelli, Y.Y. Tse, C. Tuck, Metall. Mater. Trans. A 45, 2863 (2014)

    Google Scholar 

  19. A. Sarker, N. Tran, A. Rifai, J. Elambasseril, M. Brandt, R. Williams, M. Leary, K. Fox, Mater. Design 154, 326 (2018)

    Google Scholar 

  20. L. Jiao, Z.Y. Chua, S.K. Moon, J. Song, G. Bi, H. Zheng, Nanomaterials 8, 601 (2018)

    Google Scholar 

  21. M. Wang, Y. Wu, S. Lu, T. Chen, Y. Zhao, H. Chen, Z. Tang, Prog. Nat. Sci. Mater. Int. 26, 671 (2016)

    Google Scholar 

  22. N. Otero, P. Romero, A. Gonzalez, A. Scano, J. Laser Micro Nanoen. 7, 152 (2012)

    Google Scholar 

  23. P. Romeroa, N. Otero, A. González, G. García, A. Scano, Phycs. Proc. 12, 277 (2011)

    Google Scholar 

  24. G.P. Dinda, A.K. Dasgupta, J. Mazumder, Scripta Mater. 67, 503 (2012)

    Google Scholar 

  25. H.L. Wei, J. Mazumder, T. DebRoy, Sci. Rep. 5, 16446 (2015)

    Google Scholar 

  26. X. Zhou, K. Li, D. Zhang, X. Liu, J. Ma, W. Liu, Z. Shen, J. Alloy. Compd. 631, 153 (2015)

    Google Scholar 

  27. I. Yadroitsava, J. Els, G. Booysen, I. Yadroitsev, S. Afr. J. Ind. Eng. 26, 86 (2015)

    Google Scholar 

  28. P. Tang, S. Wang, H. Duan, M. Long, Y. Li, S. Fan, D. Chen, Jom 72, 1128 (2020)

    Google Scholar 

  29. S. Sharma, V. Mandal, S.A. Ramakrishna, J. Ramkumar, J. Mater. Process. Tech. 262, 131 (2018)

    Google Scholar 

  30. C.D. Boley, S.A. Khairallah, A.M. Rubenchik, Appl. Opt. 54, 2477 (2015)

    Google Scholar 

  31. P. Tang, H. Xie, S. Wang, X. Ding, Q. Zhang, H. Ma, J. Yang, S. Fan, M. Long, D. Chen, X. Duan, Metall. Mater. Trans. B 50, 2273 (2019)

    Google Scholar 

  32. B. Singh, P. Singhal, K.K. Saxena, R.K. Saxena, Met. Mater. Int. 27, 2848 (2021)

    Article  Google Scholar 

  33. R. Rai, T.A. Palmer, J.W. Elmer, T. Debroy, Weld. J. 88, 54 (2009)

    Google Scholar 

  34. M. Courtois, M. Carin, P. Le Masson, S. Gaied, M. Balabane, J. Phys. D Appl. Phys. 46, 505305 (2013)

    Google Scholar 

  35. Y. Zhang, Z. Shen, X. Ni, Int. J. Heat Mass Transf. 73, 429 (2014)

    Google Scholar 

  36. H. Shen, D. Feng, Z. Yao, J. Manuf. Sci. Eng. 139, 041008 (2016)

    Google Scholar 

  37. J. Kim, S. Lee, Y. Choi, S.M. Lee, D. Jeong, Math. Probl. Eng. 2016, 9532608 (2016)

    Article  Google Scholar 

  38. R. Jafari, T. Okutucu-Özyurt, J. Comput. Multiph. Flows. 7, 143 (2015)

    Google Scholar 

  39. P. Yue, J.J. Feng, C. Liu, J. Shen, J. Fluid Mech. 515, 293 (2004)

    Google Scholar 

  40. X. Yang, Y. Fu, X. Kuang, Met. Mater. Int. 27, 4225 (2021)

    Article  Google Scholar 

  41. K. Hirano, R. Fabbro, M. Muller, J. Phys. D Appl. Phys. 44, 435402 (2011)

  42. S.I. Anisimov, Sov. Phys. JETP 27, 182 (1968)

    Google Scholar 

  43. K. Nogi, K. Ogino, A. McLean, W.A. Miller, Metall. Trans. B 17, 163 (1986)

    Google Scholar 

  44. W.E. King, H.D. Barth, V.M. Castillo, G.F. Gallegos, J.W. Gibbs, D.E. Hahn, C. Kamath, A.M. Rubenchik, J. Mater. Process. Tech. 214, 2915 (2014)

    Google Scholar 

  45. G.L. Knapp, N. Raghavan, A. Plotkowski, T. DebRoy, Addit. Manuf. 25, 511 (2019)

    Google Scholar 

  46. A. Bauereiß, T. Scharowsky, C. Körner, J. Mater. Process. Tech. 214, 2522 (2014)

    Google Scholar 

  47. G. Nagayama, D. Zhang, Soft Matter 16, 3514 (2020)

    Google Scholar 

  48. A.A. Savchenko, A.I. Belyaeva, A.A. Galuza, I.V. Kolenov, J. Appl. Phys. 125, 065307 (2019)

    Google Scholar 

  49. J. Song, Y. Chew, G. Bi, X. Yao, B. Zhang, J. Bai, S. Ki, Mater. Design 137, 286 (2018)

    Google Scholar 

  50. M. Bayat, S. Mohanty, J.H. Hattel, Int. J. Heat Mass Transf. 139, 95 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Gopinath Sahu for his help on contact angle measurements of the samples at IIT Kanpur. The authors would like to express their thanks to the financial assistance provided by the Institute and equipment purchased from the project supported by BIRAC/DBT (BT/NBM0127/03/18).

Funding

Financial assistance provided by the Institute and equipment purchased from the project supported by BIRAC/DBT (BT/NBM0127/03/18).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sudhanshu S. Singh or J. Ramkumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, V., Sharma, S., Singh, S.S. et al. Laser Surface Texturing in Powder Bed Fusion: Numerical Simulation and Experimental Characterization. Met. Mater. Int. 28, 181–196 (2022). https://doi.org/10.1007/s12540-021-01072-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-01072-w

Keywords

Navigation