Skip to main content
Log in

Carbide Behavior and Micro-void of Inconel 690 According to Nb Content and Aging Temperature

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this study, the effect of Nb content and aging temperature on the weld of Inconel 690 was investigated by the behavior of \({\text{M}}_{23} {\text{C}}_{6}\). After changing the Nb content of FM-52 to 0.65 wt%, 1.48 wt%, 2.45 wt%, and 3.46 wt%, shielded metal arc welding was conducted under constrained conditions to reduce the thermal deformation. As a result of measuring the hardness after aging treatment, the hardness increased with the Nb content, and it was determined that the transgranular and intergranular precipitation effect of MC on the increase in hardness was greater than that of \({\text{M}}_{23} {\text{C}}_{6}\), which mainly precipitated at the migrated grain boundary (MGB) compared to MC. Optical Microscope analysis showed that the MGB changed from a straight type to a vermicular type as the Nb content increased. As a result of SEM/EDS and EBSD analysis, most of the carbide (\({\text{M}}_{23} {\text{C}}_{6}\)) was observed in specimen A with a low Nb content and decreased with an increase in the aging temperature, and the fraction of \({\text{M}}_{23} {\text{C}}_{6}\) decreased with an increase in the Nb content. Micro-voids were generated by a large amount of \({\text{M}}_{23} {\text{C}}_{6}\) at an aging temperature of 600–800 °C in the A and B specimens with a relatively low Nb content. The pitting resistance was improved due to the amount of Cr-rich \({\text{M}}_{23} {\text{C}}_{6}\) decreased as the Nb content increased. However, no decrease in corrosion resistance was observed owing to the micro-voids produced near Cr-rich \({\text{M}}_{23} {\text{C}}_{6}\).

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce findings of this study cannot be shared at this time because of legal or ethical reasons.

References

  1. J.B. Ferguson, H.F. Lopez, Metall. Mater. Trans. A 37, 2471 (2006)

  2. N.E. Nissley, J.C. Lippold, Weld. J. 87, 257 (2008)

    Google Scholar 

  3. S. Nam, C. Kim, Y.-M. Kim, J. Weld. Join. 35, 7 (2017)

    Article  Google Scholar 

  4. R.J. Lemire, G.A. McRae, J. Nucl. Mater. 294, 141 (2001)

    Article  CAS  Google Scholar 

  5. J.J. Kai, G.P. Yu, C.H. Tsai, M.N. Liu, S.C. Yao, Metall. Trans. A 20, 2057 (1989)

    Article  Google Scholar 

  6. A.J. Ramirez, J.C. Lippold, Mater. Sci. Eng. A 380, 259 (2004)

    Article  Google Scholar 

  7. W. Mo, S. Lu, D. Li, Y. Li, Mater. Sci. Eng. A 582, 326 (2013)

    Article  CAS  Google Scholar 

  8. C. Hua, H. Lu, C. Yu, J. Chen, X. Wei, J. Xu, J. Mater. Process. Tech. 239, 240 (2017)

    Article  CAS  Google Scholar 

  9. A.J. Ramirez, J.C. Lippold, in Hot Cracking Phenomena in Welds, ed. by T. Boellinghaus, H. Herold (Springer, Berlin, Heidelberg, 2005), pp. 19–41

    Book  Google Scholar 

  10. X. Wei, M. Xu, J. Chen, C. Yu, J. Chen, H. Lu, J. Xu, Mater. Charact. 145, 65 (2018)

    Google Scholar 

  11. T. Baldrige, G. Poling, E. Foroozmehr, R. Kovacevic, T. Metz, V. Kadekar, M. C. Gupta, Opt. Laser. Eng. 51, 180 (2013) 

  12. M.G. Collins, A.J. Ramirez, J.C. Lippold, Weld. J. 83, 31 (2004)

    Google Scholar 

  13. A.J. Ramirez, J.C. Lippold, Mater. Sci. Eng. A 380, 245 (2004)

    Article  Google Scholar 

  14. A.J. Ramirez, C.M. Garzon, in Hot Cracking Phenomena in Welds II, ed. by T. Boellinghaus, H. Herold, C.E. Cross, J.C. Lippold (Springer, Berlin, Heidelberg, 2008), pp. 427–453

    Book  Google Scholar 

  15. W. Mo, S. Lu, D. Li, Y. Li, Metall. Mater. Trans. A 45, 5114 (2014)

    Article  CAS  Google Scholar 

  16. T.H. Lee, Y.J. Lee, S.H. Joo, H.H. Nersisyan, K.T. Park, Metall. Mater. Trans. A 46, 4020 (2015)

    Article  CAS  Google Scholar 

  17. H. Li, S. Xia, B. Zhou, J. Peng, Mater. Charact. 81, 1 (2013)

    Article  CAS  Google Scholar 

  18. R. Hu, G. Bai, J. Li, J. Zhang, T. Zhang, H. Fu, Mater. Sci. Eng. A 548, 83 (2012)

    Article  CAS  Google Scholar 

  19. D.J. Lee, Y.S. Kim, Y.T. Shin, E.C. Jeon, S.H. Lee, H.-J. Lee, S.K. Lee, J.H. Lee, H.W. Lee, Met. Mater. Int. 16, 813 (2010)

    Article  CAS  Google Scholar 

  20. N.E. Nissley, J.C. Lippold, Weld. J. 88, 131 (2009)

    Google Scholar 

  21. R. Qin, H. Wang, G. He, Metall. Mater. Trans. A 46, 1227 (2015)

    Article  CAS  Google Scholar 

  22. S. Kou, Welding Metallurgy, 2nd edn. (Wiley, New Jersey, 2003), pp.375-392

    Google Scholar 

  23. W. Mo, S. Lu, D. Li, Y. Li, J. Mater. Sci. Technol. 29, 458 (2013)

    Article  CAS  Google Scholar 

  24. A.Y. Jang, D.J. Lee, S.H. Lee, J.H. Shim, S.W. Kang, H.W. Lee, Mater. Design 32, 371 (2011)

    Article  CAS  Google Scholar 

  25. H.T. Lee, S.L. Jeng, T.Y. Kuo, Metall. Mater. Trans. A 34, 1097 (2003)

    Article  CAS  Google Scholar 

  26. W.V. Youdelis, O. Kwon, Met. Sci. 17, 385 (1983)

    Article  CAS  Google Scholar 

  27. W. Wu, C.H. Tsai, Metall. Mater. Trans. A 30, 417 (1999)

    Article  Google Scholar 

  28. B. Piekarski, Mater. Charact. 61, 899 (2010)

    Article  CAS  Google Scholar 

  29. B. Sasmal, J. Mater. Sci. 32, 5439 (1997)

    Article  CAS  Google Scholar 

  30. E.A. Trillo, L.E. Murr, J. Mater. Sci. 33, 1263 (1998)

    Article  CAS  Google Scholar 

  31. T. Shibata, T. Iron Steel I. Jpn. 23, 785 (1983)

    CAS  Google Scholar 

  32. J.W. Han, S.H. Jung, H. Cho, H.W. Lee, Int. J. Electrochem. Sci. 13, 2829 (2018)

    Article  CAS  Google Scholar 

  33. J.B. Lee, Mater. Chem. Phys. 99, 224 (2006)

    Article  CAS  Google Scholar 

  34. A. Maniee, F. Mahboubi, R. Soleimani, Met. Mater. Int. 26, 1664 (2020)

    Article  CAS  Google Scholar 

  35. C.S. Kiminami, C.A.C. Souza, L.F. Bonavina, L.R.P. de Andrade Lima, S. Suriñach, M.D. Baró, C. Bolfarini, W.J. Botta, J. Non-Cryst. Solids 356, 2651 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Dong-A University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haewoo Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Kim, D. & Lee, H. Carbide Behavior and Micro-void of Inconel 690 According to Nb Content and Aging Temperature. Met. Mater. Int. 27, 4681–4699 (2021). https://doi.org/10.1007/s12540-021-01028-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-01028-0

Keywords

Navigation