Skip to main content
Log in

Ultrasonic Treatment of Ti-5Al-0.5 V Alloy Subjected to Equal-Channel Angular Pressing

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Microstructure and room temperature mechanical properties of α-titanium alloy Ti-5Al-0.5 V subjected to equal channel angular pressing (ECAP) and subsequent ultrasonic treatment (UST) have been studied. The ECAP was carried out at 600 °C by route Bc and the UST at the frequency of 20 kHz and amplitude of compression-tension stresses of 100 MPa for processing time of 60 s. The dislocation densities after ECAP and subsequent UST were estimated by x-ray diffraction and positron lifetime spectroscopy. By the latter, vacancy concentration also was determined. It has been shown that UST results in a very little increase in the dislocation density and vacancy concentration and has no considerable effect on the mechanical properties of the ECAP-ed titanium alloys. Basing on the data obtained and earlier published results of computer simulations of the behavior of nonequilibrium grain boundaries in Ni and Ti under the action of ultrasound it is concluded that the structural transformations in Ti under UST occur at much higher stresses than in Ni, in which UST results in significant modifications of the structure and properties.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A.V. Kulemin, Ultrasound and Diffusion in Metals (Metallurgiya, Moscow, 1978)

    Google Scholar 

  2. O.V. Abramov, High-Intensity Ultrasonics: Theory and Industrial Applications (CRC Press, Boca Raton, 1999)

    Google Scholar 

  3. N.A. Tyapunina, E.K. Naimi, G.M. Zinenkova, Action of Ultrasound on Crystals with Defects (Moscow State University, Moscow, 1999)

    Google Scholar 

  4. F. Blaha, B. Langenecker, Naturwissenschaften 42, 556 (1955)

    Article  CAS  Google Scholar 

  5. R. Friedrich, G. Kaiser, W. Pechhold, Z. Metallkunde 60, 390 (1969)

    Google Scholar 

  6. A.V. Kulemin, V.P. Chernov, Akust. Zhurnal  20, 575 (1974). [In Russian]

    CAS  Google Scholar 

  7. H. Park, J. Kim, Y. Pyun, A. Amanov, Y.S. Choi, Met. Mater. Int. 25, 606 (2019)

    Article  CAS  Google Scholar 

  8. G. Chen, X. Chang, J. Zhang, Y. Jin, C. Sun, Q. Chen, Z. Zhao, Met. Mater. Int. 26, 1574 (2020)

    Article  CAS  Google Scholar 

  9. R.Z. Valiev, A.P. Zhilyaev, T.G. Langdon, Bulk Nanostructured Materials: Fundamentals and Applications (Wiley, Hoboken, 2013)

    Book  Google Scholar 

  10. T. Khelfa, J.A. Muños-Bolaños, F. Li, J.M. Cabrera-Marrero, M. Khitouni, Met. Mater. Int. 26, 1247 (2020)

    Article  CAS  Google Scholar 

  11. M. Zhang, L. Liu, S. Liang, J. Li, Met. Mater. Int. 26, 1585 (2020)

    Article  CAS  Google Scholar 

  12. F. Djavanroodi, H. Ahmadian, K. Koohkan, R. Naseri, Ultrasonics 53, 1089 (2013)

    Article  CAS  Google Scholar 

  13. S. Bagherzadeh, K. Abrinia, Q. Han, J. Manuf. Process. 50, 485 (2020)

    Article  Google Scholar 

  14. A.G. Bulutsuz, Adv. Eng. Mater. 23, 2000784 (2021)

    Article  CAS  Google Scholar 

  15. T. Donič, G. Raab, D. Aksenov, R. Asfandiyarov, B. Hadzima, Mater. SWci. Technol. 36, 933 (2020)

    Article  CAS  Google Scholar 

  16. A.A. Nazarova, R.R. Mulyukov, V.V. Rubanik, Y.V. Tsarenko, A.A. Nazarov,  Phys. Met. Metallogr. 110, 574 (2010)

    Article  Google Scholar 

  17. A.A. Samigullina, A.A. Nazarov, R.R. Mulyukov, Y.V. Tsarenko, V.V. Rubanik, Rev. Adv. Mater. Sci. 39, 48 (2014)

    CAS  Google Scholar 

  18. A.A. Samigullina, R.R. Mulyukov, A.A. Nazarov, A.A. Mukhametgalina, Y.V. Tsarenko, V.V. Rubanik, Lett. Mater. 4, 52 (2014)

    Article  Google Scholar 

  19. A.A. Samigullina, R.K. Khisamov, R.R. Mulyukov, Lett. Mater. 2, 134 (2012)

    Article  Google Scholar 

  20. R.T. Murzaev, D.V. Bachurin, A.A. Nazarov, Ultrasonics 64, 77 (2016)

    Article  CAS  Google Scholar 

  21. A.A. Nazarov, ShKh. Khannanov, Fiz. Khim. Obrab. Mater. 4, 109 (1986)

    Google Scholar 

  22. R.T. Murzaev, D.V. Bachurin, A.A. Nazarov, Phys. Met. Metallogr. 118, 621 (2017)

    Article  CAS  Google Scholar 

  23. D.V. Bachurin, R.T. Murzaev, A.A. Nazarov, Int. J. Solids Struct. 156–157, 1 (2018)

    Google Scholar 

  24. A.A. Nazarov, Lett. Mater. 8, 372 (2018)

    Article  Google Scholar 

  25. A.A. Nazarov, R.T. Murzaev, Comp. Mater.  Sci. 151, 204 (2018)

    Article  CAS  Google Scholar 

  26. A.P. Zhilyaev, A.A. Samigullina, A.E. Medvedeva, S.N. Sergeev, J.M. Cabrera, A.A. Nazarov, Mater. Sci. Eng. A 698, 136 (2017)

    Article  CAS  Google Scholar 

  27. A.A. Samigullina, A.P. Zhilyaev, E.R. Shayakhmetova, A.A. Nazarov, A.A. Mukhametgalina, Mater. Sci. Eng. A 772, 138764 (2020)

    Article  CAS  Google Scholar 

  28. A. Samigullina, M. Murzinova, A. Mukhametgalina, A. Zhilyaev, A. Nazarov, Defect Diffus. Forum 385, 53 (2018)

    Article  Google Scholar 

  29. A.A. Mukhametgalina, M.A. Murzinova, A.A. Nazarov, IOP Conf. Ser. Mat. Sci. 672, 012047 (2019)

    Article  CAS  Google Scholar 

  30. R.T. Murzaev, D.V. Bachurin, A.A. Mukhametgalina, M.A. Murzinova, A.A. Nazarov, Phys. Lett. A 384, 126906 (2020)

    Article  CAS  Google Scholar 

  31. H. Gleiter, Progr. Mater. Sci. 33, 223 (1989)

    CAS  Google Scholar 

  32. I.P. Semenova, L.R. Saitova, G.I. Raab, A.I. Korshunov, Y.T. Zhu, T.C. Lowe, R.Z. Valiev, Mater. Sci. Forum. 503–504, 757 (2006)

    Article  Google Scholar 

  33. R.Z. Valiev, I.V. Alexandrov, N.A. Enikeev, M. Yu Murashkin, I.P. Semenova, Rev. Adv. Mater. Sci. 25, 1 (2010)

    CAS  Google Scholar 

  34. S.V. Kovsh, V.A. Kotko, I.G. Polotskii, G.I. Prokopenko, V.I. Trefilov, S.A. Firstov, Fiz. Met. Metalloved. 35, 1199 (1973)

    CAS  Google Scholar 

  35. L. Lutterotti, Maud: materials analysis using diffraction, http://maud.radiographema.eu. Accessed 15 December 2020

  36. G.K. Williamson, R.E. Smallman, Philos. Mag. 1, 34  (1956)

  37. M. Griffiths, J.E. Winegar, J.E. Mecke, R.A. Holt, Adv. X-ray Anal. 35, 593 (1992)

    Google Scholar 

  38. A.P. Zhilyaev, G. Ringot, Y. Huang, J.M. Cabrera, T.G. Langdon, Mater. Sci. Eng. A 688, 498 (2017)

    Article  CAS  Google Scholar 

  39. F. Becvar, J. Cizek, I. Prochazka, J. Janotova, Nucl. Instrum. Methods A 539, 372 (2005)

    Article  CAS  Google Scholar 

  40. J. Čížek, Acta. Phys. Pol. A 137, 177 (2020)

    Article  Google Scholar 

  41. M.A. Shtremel, Strength of Alloys, Part 1. Lattice Defects (Moscow Steel and Alloys Inst., Moscow, 1999)

  42. J.P. Hirth, J. Lothe, Theory of Dislocations (Wiley, New York, 1982)

    Google Scholar 

  43. S.V. Zherebtsov, G.S. Dyakonov, A.A. Salem, V.I. Sokolenko, G.A. Salishchev, S.L. Semiatin, Acta Mater. 61, 1167 (2013)

    Article  CAS  Google Scholar 

  44. I.P. Semenova, G.S. Dyakonov, G.I. Raab, Y.F. Grishina, Y. Huang, T.G. Langdon, Adv. Eng. Mater. 20, 1700813 (2018)

    Article  CAS  Google Scholar 

  45. G.S. Dyakonov, S. Mironov, N. Enikeev, I.P. Semenova, R.Z. Valiev, S.L. Semiatin, Mater. Sci. Eng. A 742, 89 (2019)

    Article  CAS  Google Scholar 

  46. J. Cizek, O. Melikhova, Z. Barnovska, I. Prochazka, R.K. Islamgaliev, J. Phys. Conf. Series. 443, 012008 (2013)

    Article  Google Scholar 

  47. R.N. West, Adv. Phys. 22, 263 (1973)

    Article  CAS  Google Scholar 

  48. A.A. Samigullina, A.A. Mukhametgalina, A.A. Nazarov, N.Y. Parkhimovich, A.P. Zhilyaev, Y.V. Tsarenko, V.V. Rubanik, IOP Conf. Ser. Mat. Sci. 447, 012017 (2018)

  49. M. Blanter, I.S. Golovin, in Enciclopedia of Iron, Steel, and Their Alloys, 1st edn., ed. by R. Colás, G.E. Totten (CRC Press, Boca Raton, 2016), pp. 1852–1860

  50. M.P. Matheny, K.F. Graf, in Power Ultrasonics-Applications of High-intensity Ultrasound, ed by J.A. Gallego- Juarez, K.F. Graf (Woodhead Publishing, Cambridge, 2015), pp 259–293

  51. A.A. Mukhametgalina, M.A. Murzinova, A.A. Nazarov, IOP Conf. Ser. Mat. Sci. 1008, 012007 (2020)

Download references

Acknowledgements

The present work was accomplished according to the state assignment of the Institute for Metals Superplasticity Problems of the Russian Academy of Sciences financed by the Ministry of Science and Higher Education of Russia. Partial financial support by ERDF under the project No. CZ.02.1.01/0.0/0.0/15 003/0000485 is also gratefully acknowledged. Electron microscopic and x-ray diffraction studies were carried out on the facilities of shared services center of IMSP RAS ”Structural and Physical-Mechanical Studies of Materials”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayrat A. Nazarov.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhametgalina, A.A., Murzinova, M.A., Nazarov, A.A. et al. Ultrasonic Treatment of Ti-5Al-0.5 V Alloy Subjected to Equal-Channel Angular Pressing. Met. Mater. Int. 28, 1257–1263 (2022). https://doi.org/10.1007/s12540-021-01018-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-01018-2

Keywords

Navigation