Skip to main content
Log in

Assessment of Critical Vortexing Height to Prevent Slag Entrapment During Tundish Teeming

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

With globalization and increased competitiveness in the steel market, industries are required to produce quality steel at a reasonable cost. This necessitates the introduction of either new manufacturing techniques, or to improve quality and yield with the existing processes. It is well established that slags entrapped by the vortexing phenomenon during steelmaking processes are responsible for causing quality issues and lowering the yield of steel produced. Measures are taken to end teeming from tundish before initiation of vortexing to prevent slag entrainment. This premature end of teeming is an inevitable yield loss that needs to be minimized. The present work aims to increase the efficiency of the steelmaking process by control techniques for minimizing tundish slag entrainment during tundish teeming. Experimental and mathematical simulations with different tundish configurations have been carried out to analyze the initiation of slag vortexing. The mathematical simulation uses multiphase models with a steel–slag–air system while the physical simulation uses a water–paraffin oil system to replicate the steel–slag system. It has been observed that the presence of higher turbulence and a thicker slag layer over liquid steel increases vortex initiation height (Hcr). An empirical correlation between these parameters with Hcr has been developed to optimize the end of teeming and increase process yield.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Y. Sahai, E. Toshihiko, ISIJ Int. 36, 667 (1996)

    Article  CAS  Google Scholar 

  2. D. Mazumdar, Steel Res. Int. 90, 1800279 (2019)

    Article  Google Scholar 

  3. S.R. Dolan, E.S. Oliveria, Phys. Rev. D 87, 124038 (2013)

    Article  Google Scholar 

  4. D.P. Tan, P.Y. Li, Y.X. Ji, D.H. Wen, C. Li, IEEE T. Ind. El. Con. In. 60, 4702 (2013)

    Article  Google Scholar 

  5. D. Li, D. Tan, D.L. Li, S. Zhang, Y. Zhu, Z. Yin, Int. J. Heat Mass Trans. 150, 119250 (2020)

    Article  Google Scholar 

  6. S.J. Lee, S.J. Kim, H.G. Lee, Met. Mater. Int. 22, 136 (2016)

    Article  CAS  Google Scholar 

  7. K. Kuwana, M.I. Hassan, P.K. Singh, K. Saito, J. Nakagawa, Mater. Manuf. Process. 2, 407 (2008)

    Article  Google Scholar 

  8. P. Ni, L.T.I. Jonsson, P.G. Jonsson, Steel Res. Int. 84, 276 (2012)

    Article  Google Scholar 

  9. R.D. Morales, O. Dávila-Maldonado, I. Calderon, K. Morales-Higa, ISIJ Int. 53, 782 (2013)

    Article  CAS  Google Scholar 

  10. D. Tan, Y. Ni, L. Zhang, J. Iron Steel Res. Int. 24, 669 (2017)

    Article  Google Scholar 

  11. R.D. Morales, S.G. Hernandez, J.D.J. Barreto, A.C. Huerta, I.C. Ramos, E. Gutierrez, Metall. Mater. Trans. B 47, 2595 (2016)

    Article  CAS  Google Scholar 

  12. J.H. Ahn, J.K. Yoon, J.E. Lee, Met. Mater. Int. 8, 271 (2002)

    Article  Google Scholar 

  13. K. Michalek, K. Gryc, L. Socha, M. Tkadleckova, M. Saternus, J. Pieprzyca, T. Merder, L. Pindor, Arch. Metall. Mater. 62, 1469 (2017)

    Article  Google Scholar 

  14. A. Mabentsela, G. Akdogan, S. Bradshaw, J. South. Afr. Inst. Min. Metall. 117, 469 (2017)

    Article  Google Scholar 

  15. S.G. Hernandez, J.J. Barreto, J.A. Ramos-Banderas, G. Solorio-Diaz, Steel Res. Int. 81, 453 (2010)

    Article  Google Scholar 

  16. S. Pirker, Steel Res. Int. 81, 623 (2010)

    Article  CAS  Google Scholar 

  17. S.G. Hernandez, G. Solorio-Diaz, J.A. Ramos-Banderas, J.J. Barreto, R.D. Morales, Steel Res. Int. 80, 256 (2009)

    Google Scholar 

  18. G. Solorio-Diaz, J.A. Ramos-Banderas, J.J. Barreto, R.D. Morales, Steel Res. Int. 78, 248 (2007)

    Article  CAS  Google Scholar 

  19. K. Krishnapisharody, G.A. Irons, Metall. Mater. Trans. B 37, 763 (2006)

    Article  Google Scholar 

  20. K. Chatopadhyay, M. Isac, R.I.L. Guthrie, ISIJ Int. 50, 331 (2010)

    Article  Google Scholar 

  21. R. Sankaranarayanan, R.I.L. Guthrie, Ironmak. Steelmak. 29, 147 (2002)

    Article  CAS  Google Scholar 

  22. T. Merder, M. Saternus, M. Warzecha, P. Warzecha, Metalurgija 53, 323 (2014)

    Google Scholar 

  23. H.X. Li, Q. Wang, H. Lei, J.W. Jiang, Z.C. Guo, J.C. He, ISIJ Int. 56, 94 (2016)

    Article  CAS  Google Scholar 

  24. S. Pirker, M. Lechner, G. Ernst, Int. J. Cast Metal. Res. 22, 244 (2009)

    Article  Google Scholar 

  25. Ansys Inc., Release 18.2 (ANSYS Fluent Theory Guide, 2017), pp. 39–138

Download references

Acknowledgements

The authors would like to thank the management of RDCIS, SAIL for granting permission to publish this document.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antariksh Gupta.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A., Kumar, R. & Singh, R.K. Assessment of Critical Vortexing Height to Prevent Slag Entrapment During Tundish Teeming. Met. Mater. Int. 28, 1246–1256 (2022). https://doi.org/10.1007/s12540-021-01014-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-01014-6

Keywords

Navigation