Skip to main content

Effect of ECAP on Physicochemical and Biological Properties of TiO2 Nanotubes Anodized on Commercially Pure Titanium

Abstract

Despite many advantages of titanium, such as proper mechanical properties, biocompatibility and corrosion resistance, it has two main weaknesses; low tensile strength compared to other metallic biomaterials, and inadequate osseointegration owing to its bioinert spontaneous surface oxide layer. Grain refinement using Equal Channel Angular Pressing (ECAP) has been preferred as a desirable method to enhance low tensile strength. In addition, osseointegration could be improved by electrochemical oxidation (anodization), resulting in titania nanotubes formation on titanium surface. The latter has been extensively studied on commercially pure titanium (CP-Ti), and the formed nanotubes have been well characterized. However, a thorough observation on anodic nanotubes of ECAP-processed coarse-grained pure titanium (CG-Ti) is missing. In this research, we aimed to investigate the surface characteristics and cytotoxicity of anodic TiO2 nanotubes on ECAP-processed CP-Ti substrate compared to that of CG-Ti. The results generally showed superior use of nanotubes anodized on ECAP-ed CP-Ti substrates over that of coarse-grained ones. We acquired ultrafine-grained titanium (UFG-Ti) by ECAP, and synthesized anodic nanotube arrays on both UFG-Ti and CG-Ti at different times and voltages. We compared the resulted nanotubes’ morphologies, physicochemical and biological properties, in which cell culture on anodic TiO2 nanotubes of ECAP-ed CP-Ti has been performed for the first time by this research. FESEM results showed relatively lower diameter and longer nanotubes for UFG-Ti samples rather than CG-Ti ones. Nanotubes of both substrates were amorphous, and CG-Ti nanotubes were more hydrophilic than UFG-Ti nanotubes. Enhanced cell viability and proliferation were achieved on ECAP-ed CP-Ti anodic TiO2 nanotubes.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. W. Jiang, H. Cui, Y. Song, J. Mater. Sci. 53, 15130 (2018)

    CAS  Article  Google Scholar 

  2. M. Kaur, K. Singh, Mater. Sci. Eng. C 102, 844 (2019)

    CAS  Article  Google Scholar 

  3. P. Lu, M. Wu, X. Liu, W. Duan, J. Han, Met. Mater. Int. 26, 1182 (2020)

    CAS  Article  Google Scholar 

  4. H. Maleki-Ghaleh, K. Hajizadeh, A. Hadjizadeh, M.S. Shakeri, S.G. Alamdari, S. Masoudfar, E. Aghaie, M. Javidi, J. Zdunek, K.J. Kurzydlowski, Mater. Sci. Eng. C 39, 299 (2014)

    CAS  Article  Google Scholar 

  5. R. Valiev, Nat. Mater. 3, 511 (2004)

    CAS  Article  Google Scholar 

  6. M. Zhang, L. Liu, S. Liang, J. Li, Met. Mater. Int. 26, 1585 (2020)

    CAS  Article  Google Scholar 

  7. T. Khelfa, J.A. Muñoz-Bolaños, F. Li, J.M. Cabrera-Marrero, M. Khitouni, Met. Mater. Int. 26, 1247 (2020)

    CAS  Article  Google Scholar 

  8. K. Hajizadeh, B. Eghbali, Met. Mater. Int. 20, 343 (2014)

    CAS  Article  Google Scholar 

  9. M. Abbasi, F. Ahmadi, M. Farzin, Met. Mater. Int. 27, 705 (2021)

  10. S. Minagar, C.C. Berndt, J. Wang, E. Ivanova, C. Wen, Acta Biomater. 8, 2875 (2012)

    CAS  Article  Google Scholar 

  11. K. Indira, U.K. Mudali, T. Nishimura, N. Rajendran, J. Bio. Tribo. Corros. 1, 28 (2015)

    Article  Google Scholar 

  12. D. Khudhair, A. Bhatti, Y. Li, H. Amani Hamedani, H. Garmestani, P. Hodgson, S. Nahavandi, Mater. Sci. Eng. C 59, 1125 (2016)

    CAS  Article  Google Scholar 

  13. M. Zwolińska, K. Załęgowski, A. Roguska, H. Garbacz, K.J. Kurzydłowski, J. Solid State Electr. 18, 3091 (2014)

    Article  Google Scholar 

  14. J. Azadmanjiri, P.-Y. Wang, H. Pingle, P. Kingshott, J. Wang, V.K. Srivastava, A. Kapoor, RSC Adv. 6, 55825 (2016)

    CAS  Article  Google Scholar 

  15. B.-F. Tsai, Y.-C. Chen, S.-F. Ou, K.-K. Wang, Y.-C. Hsu, Int. J. Appl. Ceram. Tec. 16, 211 (2019)

    CAS  Article  Google Scholar 

  16. D.R. Barjaktarević, M.P. Rakin, V.R. Djokić, Metall. Mater. Eng. 24, 261 (2018)

    Article  Google Scholar 

  17. N. Hu, N. Gao, Y. Chen, M.J. Starink, Mater. Design 110, 346 (2016)

    CAS  Article  Google Scholar 

  18. H. Sopha, K. Tesar, P. Knotek, A. Jäger, L. Hromadko, J.M. Macak, Mater. Res. Bull. 103, 197 (2018)

    CAS  Article  Google Scholar 

  19. B. Katona, L. Nádai, A. Terdik, E. Bognár, Biomech. Hung. 6, 197 (2013)

  20. S.H. Nemati, A. Hadjizadeh, AAPS PharmSciTech 18, 2180 (2017)

  21. J. Hlinka, L. Dluhoš, K. Dědková, Key Eng. Mater. 810, 52 (2019)

    Article  Google Scholar 

  22. K. Hajizadeh, B. Eghbali, K. Topolski, K.J. Kurzydlowski, Mater. Chem. Phys. 143, 1032 (2014)

    CAS  Article  Google Scholar 

  23. Y. Liao, D. Zhang, Q. Wang, T. Wen, L. Jia, Z. Zhong, F. Bai, L. Tang, W. Que, H. Zhang, J. Mater. Chem. A 3, 14279 (2015)

    CAS  Article  Google Scholar 

  24. D.H. Shin, T. Shokuhfar, C.K. Choi, S.-H. Lee, C. Friedrich, Nanotechnology 22, 315704 (2011)

    Article  Google Scholar 

  25. I. Junkar, M. Kulkarni, M. Benčina, J. Kovač, K. Mrak-Poljšak, K. Lakota, S. Sodin-Šemrl, M. Mozetič, A. Iglič, ACS Omega 5, 7280 (2020)

    CAS  Article  Google Scholar 

  26. L. Moradi, M. Vasei, M.M. Dehghan, M. Majidi, S.F. Mohajeri, S. Bonakdar, Biomaterials 126, 18 (2017)

    CAS  Article  Google Scholar 

  27. Y. Estrin, E.P. Ivanova, A. Michalska, V.K. Truong, R. Lapovok, R. Boyd, Acta Biomater. 7, 900 (2011)

    CAS  Article  Google Scholar 

  28. J.M. Macak, L.V. Taveira, H. Tsuchiya, K. Sirotna, J. Macak, P. Schmuki, J. Electroceram. 16, 29 (2006)

    CAS  Article  Google Scholar 

  29. M. Hoseini, P. Bocher, A. Shahryari, F. Azari, J.A. Szpunar, H. Vali, J. Biomed. Mater. Res. A 102, 3631 (2014)

    Article  Google Scholar 

  30. H. Shao, C. Yu, X. Xu, J. Wang, R. Zhai, X. Wang, Appl. Surf. Sci. 257, 1649 (2010)

    CAS  Article  Google Scholar 

  31. D. Regonini, F.J. Clemens, Mater. Lett. 142, 97 (2015)

    CAS  Article  Google Scholar 

  32. K. Hajizadeh, S. Ghobadi Alamdari, B. Eghbali, Physica B 417, 33 (2013)

    Article  Google Scholar 

  33. X. Sauvage, G. Wilde, S.V. Divinski, Z. Horita, R.Z. Valiev, Mater. Sci. Eng. A 540, 1 (2012)

    CAS  Article  Google Scholar 

  34. X. Zhou, N.T. Nguyen, S. Özkan, P. Schmuki, Electrochem. Commun. 46, 157 (2014)

    CAS  Article  Google Scholar 

  35. N. Çalışkan, C. Bayram, E. Erdal, Z. Karahaliloğlu, E.B. Denkbaş, Mater. Sci. Eng. C 35, 100 (2014)

    Article  Google Scholar 

  36. L. Zhu, X. Ye, G. Tang, N. Zhao, Y. Gong, Y. Zhao, J. Zhao, X. Zhang, J. Biomed. Mater. Res. A 78A, 515 (2006)

    CAS  Article  Google Scholar 

  37. Z. Peng, J. Ni, R. Soc. Open Sci. 6, 181948 (2019)

    CAS  Google Scholar 

  38. S. Saha, R. Kumar, K. Pramanik, A. Biswas, Appl. Surf. Sci. 449, 152 (2018)

    CAS  Article  Google Scholar 

  39. K.S. Brammer, C.J. Frandsen, S. Jin, Trends Biotechnol. 30, 315 (2012)

    CAS  Article  Google Scholar 

  40. A.W. Tan, B. Pingguan-Murphy, R. Ahmad, S.A. Akbar, Ceram. Int. 38, 4421 (2012)

    CAS  Article  Google Scholar 

  41. ​R. Zhang, H. Wu, J. Ni, C. Zhao, Y. Chen, C. Zheng, X. Zhang, Mater. Sci. Eng. C 53, 272 (2015)

    CAS  Article  Google Scholar 

  42. S. Minagar, J. Wang, C.C. Berndt, E.P. Ivanova, C. Wen, J. Biomed. Mater. Res. A 101A, 2726 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afra Hadjizadeh.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chehrehsaz, Y., Hajizadeh, K., Hadjizadeh, A. et al. Effect of ECAP on Physicochemical and Biological Properties of TiO2 Nanotubes Anodized on Commercially Pure Titanium. Met. Mater. Int. 28, 1525–1535 (2022). https://doi.org/10.1007/s12540-021-01003-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-01003-9

Keywords

  • Equal Channel Angular Pressing
  • Ultrafine-grained Titanium
  • Electrochemical Anodization
  • TiO2 Nanotubes
  • Wettability
  • In Vitro Biocompatibility