Skip to main content
Log in

Mechanical Properties and Electrochemical Behavior of Electroless Ni–P-AlN Nanocomposite Coating

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Ni–P electroless coatings have already proven their ability to improve the tribological properties of various materials. This is possible due to their high hardness, good wear and corrosion resistance. However, the inclusion of AlN nanoparticles into Ni–P matrix can enormously enhance their properties. The aim of the present paper is to develop electroless Ni–P-AlN composite coatings as well as studying the effect of the incorporation of AlN particles on the structure, electrochemical, and mechanical properties of Ni–P alloy coating was studied. The morphology of the coatings were characterized using scanning electron microscopy. In addition, X-ray diffraction was conducted to characterize the structure of the coatings. The microstructural study showed that a uniform and fine-grained coating was accessible while using aluminum nitride. The addition of AlN particles resulted in higher hardness values and improved the wear resistance of the Ni–P coating. Another attainment of this study was to investigate the effect of heat treatment on the attributes of Ni–P-AlN composite coating, which results showed heat treating at 400 °C for 1 h led to the improvement of the chemical and mechanical properties on both the Ni–P and the Ni–P-AlN coatings. The maximum hardness value obtained was 870 HV100 after performing the heat treatment on the nanocomposite coating. The same sample revealed a lower wear rate compared with that of the other samples. Also, the presence of AlN nanoparticles as well as heat treatment resulted in the significant enhancement of the corrosion resistance compared with that of the Ni–P coating.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.G. Fontana, N.D. Greene, Corrosion Engineering (McGraw-Hill, New York, 2018)

    Google Scholar 

  2. R. Karmakar, P. Maji, S.K. Ghosh, Met. Mater. Int. 27, 2134 (2021)

    Article  CAS  Google Scholar 

  3. S.M.H. Mousavian, S.H. Tabaian, M. Badihehaghdam, Anti-Corros. Method. M. 67, 583 (2020)

    Article  CAS  Google Scholar 

  4. T. Rabizadeh, S.R. Allahkaram, Mater. Design 32, 133 (2011)

    Article  CAS  Google Scholar 

  5. P.A. Schweitzer, Paint and Coatings: Applications and Corrosion Resistance (CRC Press, Boca Raton, 2005)

    Book  Google Scholar 

  6. U.S. Waware, A. Hamouda, N.P. Wasekar, Surf. Coat. Tech. 337, 335 (2018)

    Article  CAS  Google Scholar 

  7. L. Guerra, F. Echeverría, E. Correa, Met. Mater. Int. 26, 773 (2020)

    Article  CAS  Google Scholar 

  8. E. Puchi-Cabrera, C. Villalobos-Gutiérrez, I. Irausquín, J. La Barbera-Sosa, G. Mesmacque, Int. J. Fatigue 28, 1854 (2006)

    Article  CAS  Google Scholar 

  9. D. Guo, H. Wu, S. Wang, Y. Dai, S. Sun, S. Qin, K. Fu, in Magnesium Technology 2018. ed. by D. Orlov, V. Joshi, K. Solanki, N. Neelameggham. TMS 2018. Phoenix, 11-15 March 2018 (Springer, Cham, 2018), pp. 21–25

  10. N. Miao, J. Jiang, W. Wu, J. N. M. J. Nanomater. 2018, 1817542 (2018)

    Google Scholar 

  11. Y. Huang, K. Shi, Z. Liao, Y. Wang, L. Wang, F. Zhu, Mater. Lett. 61, 1742 (2007)

    Article  CAS  Google Scholar 

  12. L. Das, D.-T. Chin, G. Evarts, R. Zeller, Plat. Surf. Finish 84, 66 (1997)

    CAS  Google Scholar 

  13. K. Chiu, M. Wong, F. Cheng, H. Man, Surf. Coat. Tech. 202, 590 (2007)

    Article  CAS  Google Scholar 

  14. K. Yadav, V. Uttam, R. Duchaniya, J. Mater. Sci. Surf. Eng. 4, 410 (2016)

    CAS  Google Scholar 

  15. D. Takács, L. Sziráki, T. Török, J. Sólyom, Z. Gácsi, K. Gál-Solymos, Surf. Coat. Tech. 201, 4526 (2007)

    Article  Google Scholar 

  16. M. Xu, S. Zhu, H. Ding, X. Qi, Int. J. Refract. Met. H. 62, 70 (2017)

    Article  CAS  Google Scholar 

  17. S. Kundu, S.K. Das, P. Sahoo, Silicon 10, 329 (2018)

    Article  CAS  Google Scholar 

  18. M. Yaghoobi, B. Bostani, N.P. Ahmadi, T. Indian. I. Metals 71, 393 (2018)

    Article  CAS  Google Scholar 

  19. S.H.M. Anijdan, M. Sabzi, M.R. Zadeh, M. Farzam, Mater. Res. 21, 2 (2018)

    Article  Google Scholar 

  20. G.L. Tan, D. Tang, D. Dastan, A. Jafari, J.P.B. Silva, X.T. Yin, Mat. Sci. Semicon. Proc. 122, 105506 (2021)

    Article  CAS  Google Scholar 

  21. M. Imani, E. Dastanpoor, M. H. Enayati, A. K. Basak, Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-019-00586-8

    Article  Google Scholar 

  22. V.B. Chintada, R. Koona, J. Bio. Tribo. Corros. 4, 68 (2018)

    Article  Google Scholar 

  23. D. Dong, X. Chen, W. Xiao, G. Yang, P. Zhang, Appl. Surf. Sci. 255, 7051 (2009)

    Article  CAS  Google Scholar 

  24. M.E. Soares, P. Soares, P.R. Souza, R.M. Souza, R.D. Torres, Surf. Eng. 33, 116 (2017)

    Article  CAS  Google Scholar 

  25. P. Gadhari, P. Sahoo, Surf. Rev. Lett. 23, 1550082 (2016)

    Article  Google Scholar 

  26. M. Gholizadeh-Gheshlaghi, D. Seifzadeh, P. Shoghi, A. Habibi-Yangjeh, J. Alloy. Compd. 769, 149 (2018)

    Article  CAS  Google Scholar 

  27. J. Balaraju, K. Rajam, Surf. Coat. Tech. 200, 3933 (2006)

    Article  CAS  Google Scholar 

  28. R. Muraliraja, J. Sudagar, R. Elansezhian, A. Raviprakash, R. Dhinakaran, V. Shaisundaram, M. Chandrasekaran, Arab. J. Sci. Eng. 44, 821 (2019)

    Article  CAS  Google Scholar 

  29. S.H. Hashemi, A. Ashrafi, Trans. IMF 96, 52 (2018)

    Article  CAS  Google Scholar 

  30. A. Sadeghzadeh-Attar, G. AyubiKia, M. Ehteshamzadeh, Surf. Coat. Tech. 307, 837 (2016)

    Article  CAS  Google Scholar 

  31. J. Balaraju, T.S. Narayanan, S. Seshadri, J. Solid State Electr. 5, 334 (2001)

    Article  CAS  Google Scholar 

  32. H. Luo, M. Leitch, Y. Behnamian, Y. Ma, H. Zeng, J.-L. Luo, Surf. Coat. Tech. 277, 99 (2015)

    Article  CAS  Google Scholar 

  33. L. Yu, W. Huang, X. Zhao, J. Alloy. Compd. 509, 4154 (2011)

    Article  CAS  Google Scholar 

  34. D. Dastan, Appl. Phys. A. 123, 699 (2017)

    Article  Google Scholar 

  35. L. Liu, Y.Y. Sheng, M. Liu, M. Dienwiebel, Z. Zhang, D. Dastan, Tribo. Int. 140, 105727 (2019)

    Article  CAS  Google Scholar 

  36. Y. Wu, H. Liu, B. Shen, L. Liu, W. Hu, Tribo. Int. 39, 553 (2006)

    Article  CAS  Google Scholar 

  37. H. Zuo, W. Fu, R. Fan, D. Dastan, H. Wang, Z. Shi, Mater. Lett. 263, 127217 (2020)

    Article  CAS  Google Scholar 

  38. A.S. Hamdy, M. Shoeib, H. Hady, O.A. Salam, Surf. Coat. Tech. 202, 162 (2007)

    Article  CAS  Google Scholar 

  39. A. Jafari, M. Alam, D. Dastan, S. Ziakhodadadian, Z. Shi, H. Garmestani, A. Wiedenbach, S. Talu, J. Mater. Sci. Mater. El. 30, 21185 (2019)

    Article  CAS  Google Scholar 

  40. V. Torabinejad, A.S. Rouhaghdam, M. Aliofkhazraei, M. Allahyarzadeh, J. Alloy. Compd. 657, 526 (2016)

    Article  CAS  Google Scholar 

  41. S. Rahmani, A. Omrani, S.R. Hosseini, Met. Mater. Int. 26, 979 (2020)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyyed Mohammad Mousavi Khoie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badihehaghdam, M., Mousavi Khoie, S.M., Khast, F. et al. Mechanical Properties and Electrochemical Behavior of Electroless Ni–P-AlN Nanocomposite Coating. Met. Mater. Int. 28, 1372–1385 (2022). https://doi.org/10.1007/s12540-021-00994-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-00994-9

Keywords

Navigation