Skip to main content
Log in

Artificial Neural Network for Modeling the Tensile Properties of Ferrite-Pearlite Steels: Relative Importance of Alloying Elements and Microstructural Factors

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

An artificial neural network (ANN) model was developed to predict the tensile properties as a function of alloying element and microstructural factor of ferrite-pearlite steels. The input parameters of the model were composed of alloying elements (Mn, Si, Al, Nb, Ti, and V) and microstructural factors (pearlite fraction, ferrite grain size, interlamellar spacing, and cementite thickness), while the output parameters of the model were yield strength and tensile strength. Although the ferrite-pearlite steels have complex relationships among the alloying elements, microstructural factors, and tensile properties, the ANN model predictions were found to be more accurate with experimental results than the existing equation model. In the present study the individual effect of input parameters on the tensile properties was quantitatively estimated with the help of the average index of the relative importance for alloying elements as well as microstructural factors. The ANN model attempted from the metallurgical points of view is expected to be useful for designing new steels having required mechanical properties.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N.I. Kim, W. Gil, H.D. Lim, C.H. Choi, H.W. Lee, Met. Mater. Int. 25, 193–206 (2019)

    Article  CAS  Google Scholar 

  2. F. Najafkhani, H. Mizadeh, M. Zamani, Met. Mater. Int. 25, 1039–1046 (2019)

    Article  CAS  Google Scholar 

  3. S.I. Lee, S.Y. Lee, H.G. Jung, B. Hwang, Met. Mater. Int. 24, 1221–1231 (2018)

    Article  CAS  Google Scholar 

  4. H.L. Kim, S.H. Park, Met. Mater. Int. 26, 14–24 (2020)

    Article  CAS  Google Scholar 

  5. T. Brlic, S. Reskovic, I. Jandrlic, Met. Mater. Int. 26, 179–187 (2020)

    Article  CAS  Google Scholar 

  6. D. Choi, H. Lee, S.K. Cho, H.C. Kim, S.K. Shin, Met. Mater. Int. 26, 867–881 (2020)

    Article  CAS  Google Scholar 

  7. H.Y. Lee, Met. Mater. Int. 26, 1749–1756 (2020)

    Article  CAS  Google Scholar 

  8. H.L. Kim, S.H. Bang, J.M. Choi, N.H. Tak, S.W. Lee, S.H. Park, Met. Mater. Int. 26, 1757–1765 (2020)

    Article  CAS  Google Scholar 

  9. S.I. Lee, J.Y. Kang, S.Y. Lee, B. Hwang, J. Korean Soc. Heat Treat. 29, 8–14 (2016)

    Article  Google Scholar 

  10. S.Y. Lee, S.I. Lee, B. Hwang, Mater Sci. Eng. A 711, 22–28 (2018)

    Article  CAS  Google Scholar 

  11. J.H. Shim, B. Hwang, M.G. Lee, J. Lee, Calphad 62, 67–74 (2018)

    Article  CAS  Google Scholar 

  12. G. Miyamoto, Y. Karube, T. Furuhara, Acta Mater. 103, 370–381 (2016)

    Article  CAS  Google Scholar 

  13. F.B. Pickering, B. Garbarz, Scr. Metall. 21, 249–254 (1987)

    Article  CAS  Google Scholar 

  14. T. Gladman, I.D. Mcivor, F.B. Pickering, J. Iron Steel Inst. 210, 916–930 (1972)

    CAS  Google Scholar 

  15. D.D. Chen, Y.C. Lin, Met. Mater. Int. 25, 1246–1257 (2019)

    Article  Google Scholar 

  16. S.I. Lee, S.Y. Lee, J. Han, B. Hwang, Mater. Sci. Eng. A 742, 334–343 (2019)

    Article  CAS  Google Scholar 

  17. C. Zener, J.H. Holloman, J. Appl. Phys. 15, 22–32 (1944)

    Article  Google Scholar 

  18. K.B. Kang, O. Kwon, W.B. Lee, C.G. Park, Scr. Mater. 36, 1303–1308 (1997)

    Article  CAS  Google Scholar 

  19. S.I. Lee, J. Lee, B. Hwang, Mater. Sci. Eng. A 758, 56–59 (2019)

    Article  CAS  Google Scholar 

  20. X. Deng, T. Fu, Z. Wang, G. Liu, G. Wang, R.D.K. Misra, Met. Mater. Int. 23, 175–183 (2017)

    Article  CAS  Google Scholar 

  21. H. Torkmani, S. Raygan, C.G. Mateo, J. Rassizadehghani, Y. Palizdar, Met. Mater. Int. 24, 773–788 (2018)

    Article  CAS  Google Scholar 

  22. P.C. Collins, S. Koduri, B. Welk, J. Tiley, H.L. Fraser, Metall. Mater. Trans. A 44, 1441–1453 (2013)

    Article  CAS  Google Scholar 

  23. G.Z. Quan, W.Q. Lv, Y.P. Mao, Y.W. Zhang, J. Zhou, Mater. Design 50, 51–61 (2013)

    Article  CAS  Google Scholar 

  24. Y. Sun, W. Zeng, Y. Han, X. Ma, Y. Zhao, P. Guo, G. Wang, M.S. Dargusch, Comput. Mater. Sci. 60, 239–244 (2012)

    Article  CAS  Google Scholar 

  25. W. Yu, M.Q. Li, J. Luo, S. Su, C. Li, Mater. Des. 31, 3282–3288 (2010)

    Article  CAS  Google Scholar 

  26. N.S. Reddy, J. Krishnaiah, H.B. Young, J.S. Lee, Comput. Mater. Sci. 84, 120–126 (2015)

    Article  CAS  Google Scholar 

  27. J. Kuisak, R. Kuziak, J. Mater. Process. Tech. 127, 115–121 (2002)

    Article  Google Scholar 

  28. G. Khalaj, H. yoozbashizadeh, A. Khodabandeh, A. Nazari, Neural Comput. Appl. 22, 879–888 (2013)

    Article  Google Scholar 

  29. B.E. O’Donnelly, R.L. Reuben, T.N. Baker, Met. Technol. 11, 45–51 (1984)

    Article  CAS  Google Scholar 

  30. D.E. Rumelhart, G.E. Hinton, R.J. Williams, Nature 323, 533–536 (1986)

    Article  Google Scholar 

  31. R.P. Lippmann, IEEE ASSP Mag. 4, 4–22 (1987)

    Article  Google Scholar 

  32. N. Hansen, Scr. Mater. 51, 801–806 (2004)

    Article  CAS  Google Scholar 

  33. K. Nakase, I.M. Bernstein, Metall. Mater. Trans. A 19, 2819–2829 (1988)

    Article  Google Scholar 

  34. C.M. Bae, C.S. Lee, W.J. Nam, Mater. Sci. Tech. 18, 1317–1321 (2002)

    Article  CAS  Google Scholar 

  35. C.M. Bae, W.J. Nam, Scr. Mater. 41, 313–318 (1999)

    Article  Google Scholar 

  36. W.D. Callister, D.G. Rethwisch, Materials Science and Engineering, 8th edn. (Wiley, New York, 2010)

    Google Scholar 

  37. T. Gladman, The Physical Metallurgy of Microalloyed Steels (The Institute of Materials, London, 1997)

    Google Scholar 

  38. O.P. Modi, N. Deshmukh, D.P. Mondal, A.K. Jha, A.H. Yegneswaran, H.K. Khaira, Mater. Charact. 46, 347–352 (2001)

    Article  CAS  Google Scholar 

  39. K. Matsuura, M. Tsukamoto, K. Watanabe, Acta Metall. 21, 1033–1044 (1973)

    Article  CAS  Google Scholar 

  40. S.S. Xu, Y. Zhao, X. Tong, H. Guo, L. Chen, L.W. Sun, M. Peng, M.J. Chen, D. Chen, Y. Cui, G.A. Sun, S.M. Peng, Z.W. Zhang, J. Alloy. Comp. 712, 573–578 (2017)

    Article  CAS  Google Scholar 

  41. T. Gladman, Mater. Sci. Tech. 15, 30–36 (1999)

    Article  CAS  Google Scholar 

  42. T. Takahashi, M. Nagumo, Trans. Jpn. Inst. Met. 11, 113–119 (1970)

    Article  CAS  Google Scholar 

  43. W.J. Nam, H.C. Choi, Mater Sci. Tech. 15, 527–530 (1999)

    Article  CAS  Google Scholar 

  44. C.C. Anya, T.N. Baker, Mater Sci. Eng. A 118, 197–206 (1989)

    Article  Google Scholar 

  45. Y.U. Heo, Y.Y. Song, S.J. Park, H.K.D.H. Bhadeshia, D.W. Suh, Metall. Mater. Trans. A 43, 1731–1735 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Technology Innovation Program (Grant No. 10063488) funded by the Ministry of Trade, Industry and Energy (MOTIE) and the Basic Science Research Program through the National Research Foundation of Korea (NRF-2017R1A2B2009336). The authors would like to thank Drs. P.L. Narayana and Chan Hee Park of Korea Institute of Materials Science for the instruction of artificial neural network program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joonho Lee or Byoungchul Hwang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, TW., Lee, SI., Shim, JH. et al. Artificial Neural Network for Modeling the Tensile Properties of Ferrite-Pearlite Steels: Relative Importance of Alloying Elements and Microstructural Factors. Met. Mater. Int. 27, 3935–3944 (2021). https://doi.org/10.1007/s12540-021-00982-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-00982-z

Keywords

Navigation