Skip to main content
Log in

Synthesis and Characterization of Mg-Matrix Based TiO2/Al2O3 Composite Materials

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Based on low density, Mg metal-based composites exhibit high specific mechanical properties and are actively used for weight critical structural application. In the present study, Mg-matrix based TiO2/Al2O3 composite materials were synthesized by using the powder metallurgy (Solid-phase) technique. Parameters such as the concentration of the components, temperature, and pressure were optimized before experiments. Different conditions such as temperature (30 °C) and pressure (760 mm of Hg) were also optimized. Pellets of the Mg-based composites and their pure constituent counterparts of various diameters (10–20 cm) were prepared under 50 tons of hydraulic pressure. Single-phase homogenous composites were obtained by undertaking the pellets through sintering in an electric furnace at elevated temperature (600 °C) for 1 h. The prepared materials were tested for different properties using various physicochemical techniques such as Fourier transform infrared spectroscopy (FTIR), Scanning electronic microscopy (SEM), X-ray diffraction (XRD) and Surface area analyzer. FTIR results confirmed composite formation. SEM revealed microstructures of all materials in the µm range. XRD proved the phase-distribution and crystallinity of the prepared materials. It was found that 2 and 3-component systems are homogenized when prepared by the powder metallurgy technique. The surface area of all materials was confirmed using the BET adsorption isotherm equation. The surface area of the prepared composites was found to be in the range from 40 to 70 m2/g. Such properties enable these materials for potential application in solar reflectance and as a catalyst in liquid phase hydrogenation.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. T. Xu, Y. Yang, X. Peng, J. Song, F. Pan, J. Magnes. Alloys 7, 536–544 (2019)

    Article  CAS  Google Scholar 

  2. W.-H. Liu, X. Liu, C.-P. Tang, W. Yao, Y. Xiao, X.-H. Liu, J. Magnes. Alloys 6, 77–82 (2018)

    Article  Google Scholar 

  3. M. Hasan, L. Begum, J. Magnes. Alloys 3, 283–301 (2015)

    Article  CAS  Google Scholar 

  4. G.K. Meenashisundaram, M.H. Nai, A. Almajid, M. Gupta, Mater. Design (1980–2015) 65, 104–114 (2015)

    Article  CAS  Google Scholar 

  5. S. Ghanaraja, C.M. Ramanuja, C.J. Gangadhara gowda, K.S. Abhinandhan, Mater. Today Proc. 2, 1282–1290 (2015)

    Article  CAS  Google Scholar 

  6. S. Hassan, M. Gupta, J. Alloy. Compd. 419, 84–90 (2006)

    Article  CAS  Google Scholar 

  7. J. Wang, P. Wang, H. Wang, J. Dong, W. Chen, X. Wang, S. Wang, T. Hayat, A. Alsaedi, X. Wang, ACS Sustain. Chem. Eng. 5, 7165–7174 (2017)

  8. C. Abed, M.B. Ali, A. Addad, H. Elhouichet, Mater. Res. Bull. 110, 230–238 (2019)

    Article  CAS  Google Scholar 

  9. ​M. Khodaei, F. Nejatidanesh, M.J. Shirani, A. Valanezhad, I. Watanabe, O. Savabi, J. Mech. Behav. Biomed. 100, 103396 (2019)

    Article  CAS  Google Scholar 

  10. S. Arun, M. Kumar, K.U.V. Kiran, S. Mayavan, J. Energy Storage 32, 101763 (2020)

    Article  Google Scholar 

  11. H. Yong, S. Guo, Z. Yuan, Y. Qi, D. Zhao, Y. Zhang, Renew. Energ. 157, 828–839 (2020)

  12. J. Du, Z. Lan, H. Zhang, S. Lü, H. Liu, J. Guo, J. Alloy. Compd. 802, 660–667 (2019)

  13. ​W. Huajian, S. Zhenzhen, D. Jiaqi, N. Hua, L. Guangxu, W. Wenlou, L. Zhiqiang, G. Jin, Mater. Chem. Phys. 207, 221–225 (2018)

  14. M.E. Alam, S. Han, Q.B. Nguyen, A.M.S. Hamouda, M. Gupta, J. Alloy. Compd. 509, 8522–8529 (2011)

    Article  CAS  Google Scholar 

  15. Babak Anasori, Shahram Amini, Volker Presser, Michel W. Barsoum, Nanocrystalline Mg-matrix composites with ultrahigh damping properties in Magnesium Technology 2011, ed. by W.H. Sillekens, S.R. Agnew, N.R. Neelameggham, S.N. Mathaudhu (Springer, Berlin, 2011), pp. 463–468

  16. W. Yu, X. Li, M. Vallet, L. Tian, Mech. Mater. 129, 246–253 (2019)

    Article  Google Scholar 

  17. C.J. Lee, J.C. Huang, P.J. Hsieh, Scripta Mater. 54, 1415–1420 (2006)

    Article  CAS  Google Scholar 

  18. H. Imamura, N. Sakasai, Y. Kajii, J. Alloy. Compd. 232, 218–223 (1996)

    Article  CAS  Google Scholar 

  19. M. Mondet, E. Barraud, S. Lemonnier, N. Allain, T. Grosdidier, J. Alloy. Compd. 698, 259–266 (2017)

  20. F. Zeng, Q. Cai, X. Liu, Y. Yao, F. Zhuo, Q. Gao, Y. Xie, Y. Wang, J. Alloy. Compd. 728, 413–423 (2017)

  21. M. Tian, C. Shang, Int. J. Hydrogen. Energ. 44, 338–344 (2019)

    Article  CAS  Google Scholar 

  22. M. Gupta, G.K. Meenashisundaram, Insight into Designing Biocompatible Magnesium Alloys and Composites: Processing, Mechanical and Corrosion Characteristics (Springer, Berlin, 2015)

  23. H.Z. Ye, X.Y. Liu, J. Mater. Sci. 39, 6153–6171 (2004)

    Article  CAS  Google Scholar 

  24. M. Malaki, W. Xu, A.K. Kasar, P.L. Menezes, H. Dieringa, R.S. Varma, M. Gupta, Metals 9, 330 (2019)

    Article  Google Scholar 

  25. S.F. Hassan, M. Gupta, J. Alloy. Compd. 345, 246–251 (2002)

    Article  CAS  Google Scholar 

  26. A.Y. Fong, Y. Kodera, M. Murata, T. Imai, H. Xu, M.R. Dirmyer, S.J. Obrey, J.E. Garay, Mater. Sci. Eng. B 259, 114607 (2020)

  27. W. Guo, Y. Shao, Z. Qin, S. Lü, S. Wu, J. Alloy. Compd. 829, 154544 (2020)

  28. I. Mohiuddin, A. Grover, J.S. Aulakh, A.K. Malik, S.S. Lee, R.J.C. Brown, K.-H. Kim, J. Hazard. Mater. 401, 123782 (2020)

  29. D.P. Cistola, J.A. Hamilton, D. Jackson, D.M. Small, Biochemistry 27, 1881–1888 (1988)

    Article  CAS  Google Scholar 

  30. H. Fukui, H. Ohsuka, T. Hino, K. Kanamura, ACS Appl. Mater. Inter. 2, 998–1008 (2010)

    Article  CAS  Google Scholar 

  31. S. Selvakumar, J.P. Julius, S.A. Rajasekar, A. Ramanand, P. Sagayaraj, Mater. Chem. Phys. 89, 244–248 (2005)

    Article  CAS  Google Scholar 

  32. V. Vetrivel, K. Rajendran, V. Kalaiselvi, Int. J. ChemTech Res. 7, 1090–1097 (2015)

    Google Scholar 

  33. A. Adamczyk, E. Długoń, Spectrochim. Acta A 89, 11–17 (2012)

    Article  CAS  Google Scholar 

  34. M.S. Khan, M. Sohail, N. Saeed, A. Afridi, J. Chem. Soc. Pakistan 38, 234-241 (2016)

    CAS  Google Scholar 

  35. J. Zheng, X. Hu, Z. Ren, X. Xue, K. Chou, ISIJ Int. 57, 1762–1766 (2017)

    Article  CAS  Google Scholar 

  36. A.S. Ali, A.J. Mohammed, H.R. Saud, Int. J. Eng. Technol. 7, 22–25 (2018)

    Article  CAS  Google Scholar 

  37. J. Lan, Y. Yang, X. Li, Mater. Sci. Eng. A 386, 284–290 (2004)

    Article  Google Scholar 

  38. S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60, 309–319 (1938)

    Article  CAS  Google Scholar 

  39. E.C. Arvaniti, M.C.G. Juenger, S.A. Bernal, J. Duchesne, L. Courard, S. Leroy, J.L. Provis, A. Klemm, N.D. Belie, Mater. Struct. 48, 3687–3701 (2015)

  40. P. Sirajudheen, S. Meenakshi, Mater. Today Proc. 27, 318–326 (2019)

    Article  Google Scholar 

  41. R.D. Kolasinski, K.R. Umstadter, J.P. Sharpe, R.A. Causey, R.J. Pawelko, J.A. Whaley, D.A. Buchenauer, M. Shimada, Fusion Eng. Des. 84, 1068–1071 (2009)

  42. S.-Y. Lu, M. Jin, Y. Zhang, Y.-B. Niu, J.-C. Gao, C.M. Li, Adv. Energy Mater. 8, 1702545 (2018)

    Article  Google Scholar 

  43. G. Marcelin, R.F. Vogel, H.E. Swift, J. Catal. 83, 42–49 (1983)

    Article  CAS  Google Scholar 

  44. E. Frackowiak, J. Machnikowski, F. Béguin, Novel carbonaceous materials for application in the electrochemical supercapacitors in New Carbon Based Materials for Electrochemical Energy Storage Systems: Batteries, Supercapacitors and Fuel Cells, ed. by I.V. Barsukov, C.S. Johnson, J.E. Doninger, V.Z. Barsukov (Springer, Berlin, 2006), pp. 5–20

    Chapter  Google Scholar 

  45. C. Carlucci, L. Degennaro, R. Luisi, Catalysts 9, 75 (2019)

    Article  Google Scholar 

  46. Z. Ma, Y. Wang, J. Qin, Z. Yao, X. Cui, B. Cui, Y. Yue, Y. Wang, C. Wang, Ceram. Int. 47, 1625–1631 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

Pakistan Science Foundation (PSF) is gratefully acknowledged for providing financial support to carry out this research project under PSF-MSRT/Eng/KP-UoS (12). Dr. Yaseen Iqbal (Director Material Research Laboratory, University of Peshawar) is cordially acknowledged for providing an access in his laboratory while performing experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Sohail.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohail, M., Khan, S., Rahman, S.u. et al. Synthesis and Characterization of Mg-Matrix Based TiO2/Al2O3 Composite Materials. Met. Mater. Int. 28, 887–896 (2022). https://doi.org/10.1007/s12540-020-00954-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00954-9

Keywords

Navigation