Skip to main content
Log in

Numerical Simulation and Experimental Study on Flow Forming of Laser Concave–Convex Microtexture of Cr12 Steel Surface

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this paper, Cr12 steel was taken as the research object, and laser micro melting model was established in comsol software based on physical equations such as laser heat source, convection heat transfer, evaporation mobility, recoil pressure, Marangoni effect. The forming mechanism and evolution law of concave–convex microtexture morphology were studied by numerical simulation. The research reveals the changing process of the velocity of the flow field inside the material during the surface deformation. In addition, it can be found from the temperature field changes under different power that the higher the power is, the faster the surface temperature of Cr12 material increases in the process of thermal deformation. And the hardness of the microtexture was greatly improved after the material experienced sudden heat and cold in a very short time. By comparing the numerical simulation results and the experimental results, it can be found that with the increase of power, the height, depth and diameter of the concave–convex microtexture morphology all show an increasing trend, and the surface geometry obtained through numerical simulation matches well with the experimental results. It indicates that the numerical simulation has high feasibility and can effectively reflect the forming process and morphology of concave-convex microtexture.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. N. Lin, D. Li, J. Zou, R. Xie, Z. Wang, B. Tang, Materials 11, 487 (2018)

    Article  Google Scholar 

  2. J. Zhang, Y. Chen, B. Xu, Q. Chao, Y. Zhu, X. Huang, Wear 414415, 68–78 (2018)

    Article  Google Scholar 

  3. A. Codrignani, B. Frohnapfel, F. Magagnato, P. Schreiber, J. Schneider, P. Gumbsch, Tribol. Int. 122, 46–57 (2018)

    Article  Google Scholar 

  4. P.G. Grützmacher, F.J. Profito, A. Rosenkranz, Lubricants 7, 95 (2019)

    Article  Google Scholar 

  5. M. Pang, Y. Nie, L. Ma, Int. J. Adv. Manuf. Tech. 99, 737–746 (2018)

    Article  Google Scholar 

  6. X. Liu, Y. Liu, L. Li, Y. Tian, Int. J. Adv. Manuf. Tech. 104, 3173–3180 (2019)

    Article  Google Scholar 

  7. T. Obikawa, A. Kamio, H. Takaoka, A. Osada, Int. J. Mach. Tools Manuf. 51, 966–972 (2011)

    Article  Google Scholar 

  8. C.T. Fairhall, N. Abderrahaman-Elena, R. García-Mayoral, J. Fluid Mech. 861, 88–118 (2019)

    Article  CAS  Google Scholar 

  9. J. Seo, A. Mani, Phys. Rev. Fluids 3, 044601 (2018)

    Article  Google Scholar 

  10. B.S. Yilbas, H. Ali, M. Khaled, N. Al-Aqeeli, N. Abu-Dheir, K.K. Varanasi, Appl. Surf. Sci. 351, 880–888 (2015)

    Article  CAS  Google Scholar 

  11. P. Rajesh, U. Nagaraju, G.H. Gowd, T.V. Vardhan, Int. J. Adv. Manuf. Tech. 93, 65–71 (2015)

    Google Scholar 

  12. Y. Ye, M. Wu, X. Ren, J. Zhou, L. Li, Appl. Surf. Sci. 462, 847–855 (2018)

    Article  CAS  Google Scholar 

  13. M. Bieda, M. Siebold, A.F. Lasagni, Appl. Surf. Sci. 387, 175–182 (2016)

    Article  CAS  Google Scholar 

  14. Q. Li, L. Yang, C. Hou, O. Adeyemi, C. Chen, Y. Wang, Opt. Laser. Eng. 114, 22–30 (2019)

    Article  Google Scholar 

  15. B. Xia, L. Jiang, X. Li, X. Yan, W. Zhao, Y. Lu, Appl. Phys. A 119, 61–68 (2015)

    Article  CAS  Google Scholar 

  16. J. Hai-Ni, Y. Xiao-Jun, Z. Wei, Z. Hua-Long, D. Xu, Y. Yong, Chin. Phys. Lett. 30, 044202 (2013)

    Article  Google Scholar 

  17. Y. Hirayama, M. Obara, J. Appl. Phys. 97, 064903 (2005)

    Article  Google Scholar 

  18. J.P. Colombier, P. Combis, F. Bonneau, R.L. Harzic, E. Audouard, Phys. Rev. B 71, 165406 (2005)

    Article  Google Scholar 

  19. M.F. Phala, A.P.I. Popoola, M. Tlotleng, S.L. Pityana, IJMMP 13, 331–343 (2018)

    Article  Google Scholar 

  20. S. Yang, Z. Wang, H. Kokawa, Y.S. Sato, Mat. Sci. Eng. A 474, 112–119 (2008)

    Article  Google Scholar 

  21. S. Marimuthu, M. Antar, J. Dunleavey, P. Hayward, Int. J. Adv. Manuf. Tech. 102, 2833–2843 (2019)

    Article  Google Scholar 

  22. N. Shen, J. Bude, S. Ly, W. Keller, A. Rubenchik, R. Negres, G. Guss, Opt. Express 27, 19864 (2019)

    Article  CAS  Google Scholar 

  23. X. Wang, Y. Zhang, L. Wang, J. Xian, M. Jin, M. Kang, Appl. Phys. A 123, 51 (2017)

    Article  Google Scholar 

  24. Y. Yang, Z. Chen, Y. Zhang, Int. J. Therm. Sci. 107, 141–152 (2016)

    Article  Google Scholar 

  25. T.Z. Zhang, Z.C. Jia, H.C. Cui, D.H. Zhu, X.W. Ni, J. Lu, Chin. Phys. B 25, 054206 (2016)

    Article  Google Scholar 

  26. N. Ren, L. Jiang, D. Liu, L. Lv, Q. Wang, Int. J. Adv. Manuf. Tech. 76, 735–743 (2015)

    Article  Google Scholar 

  27. S. Sharma, V. Mandal, S.A. Ramakrishna, J. Ramkumar, J. Manuf. Process. 39, 282–294 (2019)

    Article  Google Scholar 

  28. Y. Zhang, Z. Shen, X. Ni, Int. J. Heat Mass Transf. 73, 429–437 (2014)

    Article  CAS  Google Scholar 

  29. Y. Qin, G. Dai, B. Wang, X.W. Ni, J. Bi, X.H. Zhang, Opt. Laser Technol. 43, 563–569 (2011)

    Article  CAS  Google Scholar 

  30. L. Han, F.W. Liou, S. Musti, J. Heat Transf. 127, 1005–1014 (2005)

    Article  Google Scholar 

  31. S. Shashank, M. Vijay, S.A. Ramakrishna, J. Ramkumar, J. Mater. Process. Tech. 262, 131–148 (2018)

    Article  Google Scholar 

  32. M. Courtois, M. Carin, P. Le Masson, S. Gaied, M.L. Balabane, J. Laser Appl. 26, 042001 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Postgraduate Research & Practice Innovation Program of Jiangsu Province [grant number KYCX18_2245];Jiangsu provincial key research and development [grant number BE2016144]; National natural science foundation of China[grant number 51175233; 52075225].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghong Fu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Fu, Y. & Kuang, X. Numerical Simulation and Experimental Study on Flow Forming of Laser Concave–Convex Microtexture of Cr12 Steel Surface. Met. Mater. Int. 27, 4225–4234 (2021). https://doi.org/10.1007/s12540-020-00938-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00938-9

Keywords

Navigation