Skip to main content
Log in

Effect of Ni on Microstructure and Creep Behavior of A356 Aluminum Alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The effect of 0.25, 0.5 and 1 wt% Ni addition on the impression creep behavior of the cast A356 alloy was investigated. Optical and scanning electron microscopy (SEM) equipped with energy dispersive spectrometry (EDS) were used for examination of the microstructure. The alloy’s creep properties were investigated using the impression creep technique under normalized stress of 0.022–0.03 (corresponding to 600–675 MPa) and temperature of 473–513 K. The results showed that the creep properties of A356 alloy were improved by the addition of Ni. The improved creep properties were attributed to the modification of eutectic silicon and the formation of Ni-rich intermetallics. Calculating the values of stress exponent (n) and creep activation energy (Q) indicated that the dominant mechanism was the lattice self-diffusion climb controlled and Ni had no effect on the creep mechanism.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to legal or ethical reasons.

References

  1. F. Paray, J.E. Gruzleski, Cast Metals 7, 29 (1994)

    CAS  Google Scholar 

  2. F. Paray, J.E. Gruzleski, Cast Metals 7, 153 (1994)

    CAS  Google Scholar 

  3. S. Rashno, K. Ranjbar, M. Reihanian, Mater. Res. Express 6, 0865–0866 (2019)

    Google Scholar 

  4. M. Javidani, D. Larouche, Int. Mater. Rev. 59, 132 (2014)

    CAS  Google Scholar 

  5. D.H. Qigui Wang, X. Yan, F. Caron, in AFS Proceedings of 122nd Metalcasting Congress Fort Worth, Texas, Paper 18-034 (2018)

  6. M. Garat, Int. J. Metalcast. 5, 17 (2011)

    CAS  Google Scholar 

  7. S. Rashno, M. Reihanian, K. Ranjbar, Met. Mater. Int. (2019). https://doi.org/10.1007/s12540-019-00562-2

    Article  Google Scholar 

  8. A. Farkoosh, X.G. Chen, M. Pekguleryuz, Mater. Sci. Eng. A 620, 181 (2015)

    Google Scholar 

  9. M. Reihanian, K. Ranjbar, S. Rashno, Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00628-6

    Article  Google Scholar 

  10. K.E. Knipling, D.C. Dunand, D.N. Seidman, Zeitschrift für Metallkunde 97, 246 (2006)

    CAS  Google Scholar 

  11. J. Feng, B. Ye, L. Zuo, R. Qi, Q. Wang, H. Jiang, R. Huang, W. Ding, Mater. Sci. Eng. A 706, 27 (2017)

    CAS  Google Scholar 

  12. T. Bogdanoff, A.K. Dahle, S. Seifeddine, Int. J. Metalcast. 12, 434 (2018)

    CAS  Google Scholar 

  13. H. Medrano-Prieto, C. Garay-Reyes, C. Gómez-Esparza, I. Estrada-Guel, J. Aguilar-Santillan, M. Maldonado-Orozco, R. Martínez-Sánchez, Mater. Charact. 120, 168 (2016)

    CAS  Google Scholar 

  14. Z. Asghar, G. Requena, F. Kubel, Mater. Sci. Eng. A 527, 5691 (2010)

    Google Scholar 

  15. Y. Yang, K. Yu, Y. Li, D. Zhao, X. Liu, Mater. Design 33, 220 (2012)

    CAS  Google Scholar 

  16. P. Pandee, U. Patakham, C. Limmaneevichitr, J. Alloy. Compd. 728, 844 (2017)

    CAS  Google Scholar 

  17. C. Xu, W. Xiao, S. Hanada, H. Yamagata, C. Ma, Mater. Charact. 110, 160 (2015)

    CAS  Google Scholar 

  18. C. Xu, F. Wang, H. Mudassar, C. Wang, S. Hanada, W. Xiao, C. Ma, J. Mater. Eng. Perform. 26, 1605 (2017)

    CAS  Google Scholar 

  19. J.A. Taylor, Procedia Mater. Sci. 1, 19 (2012)

    CAS  Google Scholar 

  20. L. Lu, A. Dahle, Metall. Mater. Trans. A 36, 819 (2005)

    Google Scholar 

  21. Z. Ma, S. Tjong, Mater. Sci. Eng. A 256, 120 (1998)

    Google Scholar 

  22. J. Čadek, M. Pahutova, V. Šustek, Mater. Sci. Eng. A 246, 252 (1998)

    Google Scholar 

  23. J. Porter, F. Humphreys, Met. Sci. 13, 83–88 (1979)

    CAS  Google Scholar 

  24. K.K. Chawla, M. Meyers, Mechanical Behavior of Materials (Prentice Hall, Upper Saddle River, 1999), pp. 653–659

    Google Scholar 

  25. B. Kondori, R. Mahmudi, Metall. Mater. Trans. A 40, 2007 (2009)

    Google Scholar 

  26. C. Park, X. Long, S. Haberman, S. Ma, I. Dutta, R. Mahajan, S. Jadhav, J. Mater. Sci. 42, 5182 (2007)

    CAS  Google Scholar 

  27. G. Cseh, J. Bär, H.-J. Gudladt, J. Lendvai, A. Juhasz, Mater. Sci. Eng. A 272, 145 (1999)

    Google Scholar 

  28. D. Dorner, K. Röller, B. Skrotzki, B. Stöckhert, G. Eggeler, Mater. Sci. Eng. A 357, 346 (2003)

    Google Scholar 

  29. D. Sastry, Mater. Sci. Eng. A 409, 67 (2005)

    Google Scholar 

  30. R. Gupta, B. Daniel, Mater. Sci. Eng. A 733, 257 (2018)

    CAS  Google Scholar 

  31. H.J. Frost, M.F. Ashby, Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Pergamon press, Oxford, 1982), pp. 82–89

    Google Scholar 

  32. F. Yang, J. Li, C. Shih, Mater. Sci. Eng. A 201, 50 (1995)

    Google Scholar 

  33. J. Li, X. Wang, T. Ludwig, Y. Tsunekawa, L. Arnberg, J. Jiang, P. Schumacher, Acta Mater. 84, 153 (2015)

    CAS  Google Scholar 

  34. S.-Z. Lu, A. Hellawell, Metall. Trans. A 18, 1721 (1987)

    Google Scholar 

  35. M. Timpel, N. Wanderka, R. Schlesiger, T. Yamamoto, N. Lazarev, D. Isheim, G. Schmitz, S. Matsumura, J. Banhart, Acta Mater. 60, 3920 (2012)

    CAS  Google Scholar 

  36. H. Yang, D. Watson, Y. Wang, S. Ji, J. Mater. Sci. 49, 8412 (2014)

    CAS  Google Scholar 

  37. V.S. Zolotorevsky, N.A. Belov, M.V. Glazoff, Casting Aluminum Alloys (Elsevier, Amsterdam, 2007), pp. 367–376

    Google Scholar 

  38. T.O. Mbuya, B.O. Odera, S.P. Ng'ang'a, Int. J. Cast Metal. Res. 16, 451 (2003)

    CAS  Google Scholar 

  39. Y. Li, Y. Yang, Y. Wu, L. Wang, X. Liu, Mater. Sci. Eng. A 527, 7132 (2010)

    Google Scholar 

  40. S. Zhu, J. Nie, B. Mordike, Metall. Mater. Trans. A 37, 1221 (2006)

    Google Scholar 

  41. S.M. Miresmaeili, B. Nami, R. Abbasi, I. Khoubrou, JOM 71, 2128 (2019)

    CAS  Google Scholar 

  42. B.A. Esgandari, B. Nami, M. Shahmiri, A. Abedi, Trans. Nonferr. Metal. Soc. 23, 2518 (2013)

    CAS  Google Scholar 

  43. L.E. Murr, Interfacial Phenomena in Metals and Alloys (Addison-Wesley, Boston, 1975), pp. 271–294

    Google Scholar 

  44. M. Faraji, H. Khalilpour, J. Mater. Eng. Perform. 23, 3467 (2014)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support extended by the Department of Mechanical Engineering, Aligudarz branch, Islamic Azad University, Aligudarz, Iran

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahrouz Yousefzadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varmazyar, M., Yousefzadeh, S. & Sheikhi, M.M. Effect of Ni on Microstructure and Creep Behavior of A356 Aluminum Alloy. Met. Mater. Int. 28, 579–588 (2022). https://doi.org/10.1007/s12540-020-00892-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00892-6

Keywords

Navigation