Skip to main content
Log in

In Situ Formation of Extremely High Corrosion Resistant Ni–Ni3Si Nanocomposite Coating Using Spark Plasma Sintering and Subsequent Heat Treatment

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this study, the coating of Ni–Ni3Si nanocomposite was produced in-situ on plain carbon steel using spark plasma sintering process of Ni and Si powders followed by heat treatment. Increasing Si content in the powders from 6 to 13 wt% increased the amount of Si in the coatings (from 5.1 to 11.8 wt%). The corrosion behavior of the coated samples in 1 M sulfuric acid solution was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy techniques. In the 13 wt% Si coating, the eutectic structure consisting of the Ni and Ni3Si phases was observed to be uniformly distributed. Ni3Si nanoparticles with an approximate size of 90 nm were obtained in the coating by heat treatment. The results showed that passive behavior is obtained by heat treatment due to the uniform distribution of Ni3Si nanoparticles and also the uniform diffusion of silicon into the nickel phase. The excellent passivation results in the highest corrosion resistance in 13 wt%Si coating after the heat treatment.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L. Wei, Y. Huang, J. Gao, Z. Zhao, L. Liu, J. Non. Cryst. Solids 525, 119576 (2019)

    Article  CAS  Google Scholar 

  2. M. Niu, X. Zhang, J. Chen, X. Yang, Vacuum 161, 443 (2019)

    Article  CAS  Google Scholar 

  3. B. Zhang, X. Li, T. Wang, Z. Liu, Mater. Sci. Eng. A 674, 242 (2016)

    Article  CAS  Google Scholar 

  4. L. Soldi, A. Laplace, M. Roskosz, S. Gossé, J. Alloy. Compd. 803, 61 (2019)

    Article  CAS  Google Scholar 

  5. J. Liu, J. Zhang, L. Deng, G. Hao, Surf. Eng. 35, 59 (2019)

    Article  CAS  Google Scholar 

  6. M. Gholami, I. Altenberger, H.A. Kuhn, M. Wollmann, L. Wagner, Surf. Eng. 33, 706 (2017)

    Article  CAS  Google Scholar 

  7. C. Suryanarayana, A.A. Al-Joubori, Mater. Manuf. Process. 33, 840 (2018)

    Article  CAS  Google Scholar 

  8. I.G. Wood, J. Ahmed, D.P. Dobson, L. Vočadlo, J. Appl. Cryst. 46, 14 (2013)

    Article  CAS  Google Scholar 

  9. A. Kumar, A. Arora, R. Chandrakar, K.R. Rao, M. Chopkar, in Materials Today: Proceedings, ed. by A. P. Kumar et al. 1st International Conference on Advanced Light-weight Materials and Structures (ICALMS-2K20), Hyderabad, March 6–7, 2020. Vol. 27 (Elsevier, Amsterdam, 2020), p. 1310

  10. C. Cui, J. Zhang, T. Xue, L. Liu, H. Fu, J. Mater. Sci. Technol. 31, 280 (2015)

    Article  CAS  Google Scholar 

  11. M. Niu, Q. Bi, S. Zhu, J. Yang, W. Liu, J. Alloy. Compd. 555, 367 (2013)

    Article  CAS  Google Scholar 

  12. J. Liu, Y. Chen, J. Zhang, Surf. Coat. Technol. 375, 903 (2019)

    Article  CAS  Google Scholar 

  13. C. Cui, J. Zhang, K. Wu, Y. Ma, L. Liu, H. Fu, Phys. B 407, 3566 (2012)

    Article  CAS  Google Scholar 

  14. X. Li, B. Zhang, T. Wang, Z. Liu, T. Yu, J. Alloy. Compd. 672, 578 (2016)

    Article  CAS  Google Scholar 

  15. L. Wei, Z. Zhao, J. Gao, K. Cui, J. Guo, S. Chen, L. Liu, J. Cryst. Growth 483, 275 (2018)

    Article  CAS  Google Scholar 

  16. A. Cunha, R. Ferreira, B. Trindade, F.S. Silva, O. Carvalho, Mater. Manuf. Process. 35, 1032 (2020)

    Article  CAS  Google Scholar 

  17. D. Tang, J. Li, L. Wang, Z. Wang, C. Kong, H. Yu, Mater. Manuf. Process. 35, 337 (2020)

    Article  CAS  Google Scholar 

  18. S. Viswanathan, L. Mohan, M. Chakraborty, C. Mandal, P. Bera, S.T. Aruna, C. Anandan, Mater. Manuf. Process. 33, 1121 (2018)

    Article  CAS  Google Scholar 

  19. H. Latreche, S. Doublet, G. Tegeder. G. Wolf, P. Masset, T. Weber, M. Schütze, Mater. Corros. 59, 573 (2008)

  20. M. Wambach, P. Ziolkowski, E. Müller, A. Ludwig, A.C.S. Comb, Sci. 21, 362 (2019)

    CAS  Google Scholar 

  21. K.A. Thomas, S. Dey, N. Sultana, K. Sarkar, S. Datta, Mater. Manuf. Process. 35, 643 (2010)

    Article  Google Scholar 

  22. J. Yin, D.Z. Wang, L. Meng, L.D. Ke, Q.W. Hu, X.Y. Zeng, Surf. Coat. Technol. 325, 120 (2017)

    Article  CAS  Google Scholar 

  23. Y.N. Wu, Y. Kawahara, K. Kurokawa, Vacuum 80, 1256 (2016)

    Article  Google Scholar 

  24. M. Niu, Q. Bi, L. Kong, J. Yang, W. Liu, Surf. Coat. Technol. 205, 4249 (2011)

    Article  CAS  Google Scholar 

  25. M. Alizadeh, S. Narouei, J. Alloy. Compd. 772, 565 (2019)

    Article  CAS  Google Scholar 

  26. J.H. Cho, A.J. Ardell, Acta Mater. 45, 1393 (1997)

    Article  CAS  Google Scholar 

  27. G. Sauthoff, M. Kahlweit, Acta Metall. 17, 1501 (1969)

    Article  CAS  Google Scholar 

  28. M. Meshkinpour, A.J. Ardell, A., J. Mater. Sci. Eng. A 185, 153 (1994)

    Article  Google Scholar 

  29. M. Gogebakan, C. Kursun, K.O. Gunduz, M. Tarakci, Y. Gencer, J. Alloy. Compd. 643, 219 (2015)

    Article  Google Scholar 

  30. Y. Tang, J. Wang, L. Zhang, Calphad 66, 101622 (2019)

    Article  CAS  Google Scholar 

  31. A.M. Mullis, L.G. Cao, R.F. Cochrane, Mater. Sci. Forum. 790, 22 (2014)

    Article  Google Scholar 

  32. O.S. Muratov, O.S. Roik, V.P. Kazimirov, N.V. Golovataya, V.K. Nosenko, G.M. Zelinskaya, T.M. Mika, V.E. Sokol'skii, J. Mol. Liq. 200, 213 (2014)

    Article  CAS  Google Scholar 

  33. A. Nouri, H. Hassannejad, M. Farrokhi-Rad, Steel Res. Int. 90, 1900331 (2019)

    Article  CAS  Google Scholar 

  34. C.Z. Hargather, S.L. Shang, Z.K. Liu, Data Brief. 20, 1537 (2018)

    Article  Google Scholar 

  35. M.M. Verdian, K. Raeissi, M. Salehi, Appl. Surf. Sci. 261, 493 (2012)

    Article  CAS  Google Scholar 

  36. M. Alizadeh, A. Teymuri, Trans. Nonferrous Met. Soc. China. 29, 608 (2019)

    Article  CAS  Google Scholar 

  37. T. Takasugi, H. Kawai, Y. Kaneno, Mater. Sci. Eng. A 329, 446 (2002)

    Article  Google Scholar 

  38. M. Niu, Q. Bi, J. Yang, W. Liu, Tribol. Int. 48, 216 (2012)

    Article  CAS  Google Scholar 

  39. J.H. Hsu, C.M. Larson, J.W. Newkirk, R.K. Brow, S.H. Zhang, J. Mater. Eng. Perform. 25, 510 (2016)

    Article  CAS  Google Scholar 

  40. P.L. Tam, U. Jelvestam, L. Nyborg, Mater. High Temp. 26, 177 (2009)

    Article  CAS  Google Scholar 

  41. M.M. Verdian, K. Raeissi, M. Salehi, Mater. Sci. Technol. 30, 481 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Hassannejad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassannejad, H., Nouri, A., Assari, M.H. et al. In Situ Formation of Extremely High Corrosion Resistant Ni–Ni3Si Nanocomposite Coating Using Spark Plasma Sintering and Subsequent Heat Treatment. Met. Mater. Int. 28, 646–656 (2022). https://doi.org/10.1007/s12540-020-00888-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00888-2

Keywords

Navigation