Skip to main content
Log in

Production of Ultrafine-Grained Titanium with Suitable Properties for Dental Implant Applications by RS-ECAP Process

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The only problem of pure titanium for dental implant applications is its low strength and failure under different loadings. Various studies have shown that the utilization of severe plastic deformation processes such as Equal Channel Angular Pressing (ECAP), through reducing the grain size of titanium, can improve not only its mechanical properties but also its corrosion resistance and biocompatibility. In this study, a reduced-scale ECAP process on pure titanium was performed to investigate the effects of scale reduction. An ECAP die was made with an internal diameter of d = 3 mm, and the tests were performed at 250 °C for several number of passes. It was found out that after 10 passes of reduced-scale ECAP, the grain size of CP Ti had strongly been reduced from 25 to 122 nm. This sharp reduction in grain size resulted in an increase in micro-hardness from 205.5 to 321.3 Hv. Moreover, Nano-hardness test results showed that after 10 passes, the hardness of titanium increased from 2461 to 3812 MPa, and simultaneously elastic modulus decreased from 108.1 to 94.8 GPa. Such reduction of elastic modulus of titanium for dental implant applications decreased stress-shielding and jaw bone damages. According to the results of this research, after RS-ECAP process the strength of titanium is greatly increased and its elastic modulus is reduced, which are desirable features for dental implant applications. Since dental implants are small in size, the reduced ECAP process (d = 3–5 mm) can produce titanium implants with improved properties.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. L. Shi, L. Wang, Y. Duan, W. Lei, Z. Wang, J. Li, X. Fan, X. Li, S. Li, Z. Guo, PLoS ONE 8, e55015 (2013)

    CAS  Google Scholar 

  2. E. Bagherpour, N. Pardis, M. Reihanian, R. Ebrahimi, Int. J. Adv. Manuf. Technol. 100, 1647–1694 (2019)

    Google Scholar 

  3. D. Zaffe, C. Bertoldi, U. Consolo, Biomaterials 25, 3837–3844 (2004)

    CAS  Google Scholar 

  4. M. Greger, M. Černý, L. Kander, J. Kliber, Metalurgija 48, 249–252 (2009)

    CAS  Google Scholar 

  5. L. Mishnaevsky Jr., E. Levashov, R.Z. Valiev, J. Segurado, I. Sabirov, N. Enikeev, S. Prokoshkin, A.V. Solov’yov, A. Korotitskiy, E. Gutmanas, Mater. Sci. Eng. R Rep. 81, 1–19 (2014)

    Google Scholar 

  6. H. Hu, X. Qin, D. Zhang, X. Ma, Int. J. Adv. Manuf. Technol. 98, 897–903 (2018)

    Google Scholar 

  7. S.M. Alavizadeh, K. Abrinia, A. Parvizi, Met. Mater. Int. 26, 260–271 (2020)

    Google Scholar 

  8. F. Ahmadi, M. Farzin, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 228, 765–774 (2014)

    Google Scholar 

  9. F. Ahmadi, M. Farzin, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 228, 1859–1868 (2014)

    Google Scholar 

  10. F. Ahmadi, M. Farzin, M. Meratian, S. Loeian, M. Forouzan, Int. J. Adv. Manuf. Technol. 79, 503–512 (2015)

    Google Scholar 

  11. S. Mousavi, N. Naghshekesh, F. Ahmadi, B. Sadeghi, P. Cavaliere, Mater. Sci. Eng., A 728, 231–238 (2018)

    CAS  Google Scholar 

  12. F. Froes, M. Qian, Titanium in Medical and Dental Applications (Woodhead Publishing, Sawston, 2018)

    Google Scholar 

  13. M. Wroński, K. Wierzbanowski, D. Wojtas, E. Szyfner, R. Valiev, J. Kawałko, K. Berent, K. Sztwiertnia, Met. Mater. Int. 24, 802–814 (2018)

    Google Scholar 

  14. A. Polyakov, I. Semenova, R. Valiev, in IOP Conference Series: Materials Science and Engineering, vol 012113, IOP Publishing

  15. C.N. Elias, D.J. Fernandes, C.R. Resende, J. Roestel, Dent. Mater. 31, e1–e13 (2015)

    CAS  Google Scholar 

  16. G. Serra, L. Morais, C.N. Elias, I.P. Semenova, R. Valiev, G. Salimgareeva, M. Pithon, R. Lacerda, Mater. Sci. Eng., C 33, 4197–4202 (2013)

    CAS  Google Scholar 

  17. A. Balakrishnan, B. Lee, T. Kim, B. Panigrahi, Trends Biomater. Artif. Organs 22, 58–64 (2008)

    Google Scholar 

  18. Y. Estrin, C. Kasper, S. Diederichs, R. Lapovok, J. Biomed. Mater. Res., Part A 90, 1239–1242 (2009)

    CAS  Google Scholar 

  19. A. Günay-Bulutsuz, Ö. Berrak, H.A. Yeprem, E.D. Arisan, M.E. Yurci, Mater. Sci. Eng., C 91, 382–388 (2018)

    Google Scholar 

  20. J. Lu, Y. Zhang, W. Huo, W. Zhang, Y. Zhao, Y. Zhang, Appl. Surf. Sci. 434, 63–72 (2018)

    CAS  Google Scholar 

  21. L. Ostrovska, L. Vistejnova, J. Dzugan, P. Slama, T. Kubina, E. Ukraintsev, D. Kubies, M. Kralickova, M.H. Kalbacova, J. Mater. Sci. 51, 3097–3110 (2016)

    CAS  Google Scholar 

  22. R.Z. Valiev, I.P. Semenova, V.V. Latysh, H. Rack, T.C. Lowe, J. Petruzelka, L. Dluhos, D. Hrusak, J. Sochová, Adv. Eng. Mater. 10, B15–B17 (2008)

    CAS  Google Scholar 

  23. Y. Estrin, H.-E. Kim, R. Lapovok, H. P. Ng, J.-H. Jo, Biomed Res. Int. 2013, 1–6 (2013)

    Google Scholar 

  24. B. An, Z. Li, X. Diao, H. Xin, Q. Zhang, X. Jia, Y. Wu, K. Li, Y. Guo, Mater. Sci. Eng., C 67, 34–41 (2016)

    CAS  Google Scholar 

  25. C.N. Elias, M.A. Meyers, R.Z. Valiev, S.N. Monteiro, J. Mater. Res. Technol. 2, 340–350 (2013)

    CAS  Google Scholar 

  26. A.V. Polyakov, L. Dluhoš, G.S. Dyakonov, G.I. Raab, R.Z. Valiev, Adv. Eng. Mater. 17, 1869–1875 (2015)

    CAS  Google Scholar 

  27. S. Liang, X. Feng, L. Yin, X. Liu, M. Ma, R. Liu, Mater. Sci. Eng., C 61, 338–343 (2016)

    CAS  Google Scholar 

  28. B. Piotrowski, A. Baptista, E. Patoor, P. Bravetti, A. Eberhardt, P. Laheurte, Mater. Sci. Eng., C 38, 151–160 (2014)

    CAS  Google Scholar 

  29. A. Das, M. Shukla, Met. Mater. Int. 26, 1–11 (2020)

    Google Scholar 

  30. P.-J. Hou, K.-L. Ou, C.-C. Wang, C.-F. Huang, M. Ruslin, E. Sugiatno, T.-S. Yang, H.-H. Chou, J. Mech. Behav. Biomed. Mater. 79, 173–180 (2018)

    CAS  Google Scholar 

  31. Z. Wally, W. van Grunsven, F. Claeyssens, R. Goodall, G. Reilly, Metals 5, 1902–1920 (2015)

    Google Scholar 

  32. T. Khelfa, M. Rekik, J. Muñoz-Bolaños, J.M. Cabrera-Marrero, M. Khitouni, Int. J. Adv. Manuf. Technol. 95, 1165–1177 (2018)

    Google Scholar 

  33. K. Hajizadeh, B. Eghbali, K. Topolski, K. Kurzydlowski, Mater. Chem. Phys. 143, 1032–1038 (2014)

    CAS  Google Scholar 

  34. A. Fischer-Cripps, Handbook of Nanoindentation, (Springer, New York, 2009), pp. 35–53

    Google Scholar 

  35. C. Wang, B. Guo, D. Shan, Manuf. Rev. 1, 23 (2014)

    Google Scholar 

  36. H.S. Kim, Int. J. Adv. Manuf. Technol. 75, 1253–1261 (2014)

    Google Scholar 

  37. I. Balasundar, T. Raghu, Mater. Des. 31, 449–457 (2010)

    Google Scholar 

  38. S. Öğüt, A. Kentli, Int. J. Sci. Res. Eng. Technol. 5, 594–597 (2016)

    Google Scholar 

  39. J. Gholami, M. Pourbashiri, M. sedighi, Proceedings of Iran International Aluminum Conference (2014), https://www.civilica.com/Paper-IIAC03-IIAC03_066.html

  40. T. Khuder, N. Yunus, E. Sulaiman, A. Dabbagh, J. Mech. Behav. Biomed. Mater. 75, 97–104 (2017)

    Google Scholar 

  41. J. Duyck, K. Vandamme, L. Geris, H. Van Oosterwyck, M. De Cooman, J. Vandersloten, R. Puers, I. Naert, Arch. Oral Biol. 51, 1–9 (2006)

    CAS  Google Scholar 

  42. A. Monshi, M.R. Foroughi, M.R. Monshi, World J. Nano Sci. Eng. 2, 154–160 (2012)

    Google Scholar 

  43. E. Purushotham, N.G. Krishna, Bull. Mater. Sci. 36, 973–976 (2013)

    CAS  Google Scholar 

  44. K. Zhan, Y. Wu, J. Li, B. Zhao, Y. Yan, L. Xie, L. Wang, V. Ji, Appl. Surf. Sci. 435, 1257–1264 (2018)

    CAS  Google Scholar 

  45. K. Topolski, T. Brynk, H. Garbacz, Arch. Civ. Mech. Eng. 16, 927–934 (2016)

    Google Scholar 

  46. Z. Li, L. Fu, B. Fu, X. Yang, A. Shan, J. Nanosci. Nanotechnol. 14, 7740–7744 (2014)

    CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshid Ahmadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, M., Ahmadi, F. & Farzin, M. Production of Ultrafine-Grained Titanium with Suitable Properties for Dental Implant Applications by RS-ECAP Process. Met. Mater. Int. 27, 705–716 (2021). https://doi.org/10.1007/s12540-020-00796-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00796-5

Keywords

Navigation