Skip to main content
Log in

Experimental Characterization and Computational Modelling for Fatigue Behavior of a Ni-Based Single Crystal Alloy Considering Surface Roughness

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Using a combination of tests and numerical simulations, the fatigue behaviors of a Ni-based single crystal (SC) alloy with different surface roughnesses (SRs) are studied. The test results demonstrate that the fatigue life decreases with increasing SR, while the strain accumulation shown an opposite trend. Surface defects can give rise to the nucleation, aggregation and growth of surface cracks, which are the principal inducement of fatigue failure. Finite element models of the actual surface topography were established, and the notched plate models whose modelling parameters were determined by the SR parameters (\(R_{z}\), \(R_{sm}\), \(R_{a}\)) were used to equivalently simplify, the equivalent errors are within 5%. In addition, a semi-empirical formula between the surface stress concentration factor (\(K_{t}\)) and the SR parameters was fitted. By introducing the \(K_{t}\) expressed by the SR parameters into a fatigue damage model based on crystal plasticity theory, a fatigue life prediction method of a Ni-based SC alloy that considers SR was established, and it has been verified to exhibit excellent consistency with the test results.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. L. Zhang, Z. Huang, L. Jiang et al., Effect of Mo: W ratio on segregation behavior and creep strength of nickel-based single crystal superalloys. Mater. Sci. Eng. A 744, 481–489 (2019)

    Article  CAS  Google Scholar 

  2. C. Ludwig, F. Rabold, M. Kuna et al., Simulation of anisotropic crack growth behavior of nickel base alloys under thermomechanical fatigue. Eng. Fract. Mech. 224, 106800 (2020)

    Article  Google Scholar 

  3. Z. Wen, D. Zhang, S. Li et al., Anisotropic creep damage and fracture mechanism of nickel-base single crystal superalloy under multiaxial stress. J. Alloy. Compd. 692, 301–312 (2017)

    Article  CAS  Google Scholar 

  4. J.S. Van Sluytman, A.L. Fontaine, J.M. Cairney et al., Elemental partitioning of platinum group metal containing Ni-base superalloys using electron microprobe analysis and atom probe tomography. Acta Mater. 58(6), 1952–1962 (2010)

    Article  CAS  Google Scholar 

  5. B. Salehnasab, E. Poursaeidi, Mechanism and modeling of fatigue crack initiation and propagation in the directionally solidified CM186 LC blade of a gas turbine engine. Eng. Fract. Mech. 225, 106842 (2019)

    Article  Google Scholar 

  6. G.-J. Yuan, X.-C. Zhang, B. Chen et al., Low-cycle fatigue life prediction of a polycrystalline nickel-base superalloy using crystal plasticity modelling approach. J. Mater. Sci. Technol. 38, 28–38 (2020)

    Article  Google Scholar 

  7. A.R. Balachandramurthi, J. Moverare, N. Dixit et al., Influence of defects and as-built surface roughness on fatigue properties of additively manufactured Alloy 718. Mater. Sci. Eng. A 735, 463–474 (2018)

    Article  CAS  Google Scholar 

  8. A.H. Chern, N. Peeyush, M. Robert et al., Build orientation, surface roughness, and scan path influence on the microstructure, mechanical properties, and flexural fatigue behavior of Ti–6Al–4V fabricated by electron beam melting. Mater. Sci. Eng. A 772, 138740 (2020)

    Article  CAS  Google Scholar 

  9. R. Shrestha, J. Simsiriwong, N. Shamsaei, Fatigue behavior of additive manufactured 316L stainless steel parts: effects of layer orientation and surface roughness. Addit. Manuf. 28, 23–38 (2019)

    CAS  Google Scholar 

  10. K. Singh, F. Sadeghi, M. Correns et al., A microstructure based approach to model effects of surface roughness on tensile fatigue. Int. J. Fatigue 129, 105229 (2019)

    Article  CAS  Google Scholar 

  11. M. Nakatani, H. Masuo, Y. Tanaka et al., Effect of surface roughness on fatigue strength of Ti–6Al–4V alloy manufactured by additive manufacturing. Proc. Struct. Integ. 19, 294–301 (2019)

    Google Scholar 

  12. H. Zhang, A. Armstrong, P. Müllner, Effects of surface modifications on the fatigue life of unconstrained Ni–Mn–Ga single crystals in a rotating magnetic field. Acta Mater. 155, 175–186 (2018)

    Article  CAS  Google Scholar 

  13. V. Martín, J. Vázquez, C. Navarro et al., Effect of shot peening residual stresses and surface roughness on fretting fatigue strength of Al 7075-T651. Tribol. Int. 142, 106004 (2020)

    Article  CAS  Google Scholar 

  14. S. Sarkar, C.S. Kumar, A.K. Nath, Effects of different surface modifications on the fatigue life of selective laser melted 15–5 PH stainless steel. Mater. Sci. Eng. A 762, 138109 (2019)

    Article  CAS  Google Scholar 

  15. C. Yao, J. Lin, D. Wu et al., Surface integrity and fatigue behavior when turning γ-TiAl alloy with optimized PVD-coated carbide inserts. Chin. J. Aeronaut. 31(4), 826–836 (2018)

    Article  Google Scholar 

  16. T. Yuri, Y. Ono, T. Ogata, Effects of surface roughness and notch on fatigue properties for Ti–5Al–2.5Sn ELI alloy at cryogenic temperatures. Sci. Technol. Adv. Mater. 4(4), 291–299 (2003)

    Article  CAS  Google Scholar 

  17. J. Günther, S. Leuders, P. Koppa et al., On the effect of internal channels and surface roughness on the high-cycle fatigue performance of Ti–6Al–4V processed by SLM. Mater. Des. 143, 1–11 (2018)

    Article  CAS  Google Scholar 

  18. S. Pomberger, M. Leitner, M. Stoschka, Evaluation of surface roughness parameters and their impact on fatigue strength of Al-Si cast material. Mater. Today: Proc. 12, 225–234 (2019)

    CAS  Google Scholar 

  19. Y.X. Gao, J.Z. Yi, P.D. Lee et al., A micro-cell model of the effect of microstructure and defects on fatigue resistance in cast aluminum alloys. Acta Mater. 52(19), 5435–5449 (2004)

    Article  CAS  Google Scholar 

  20. Y. Aono, H. Noguchi, Fatigue limit reliability of axisymmetric complex surface. Int. J. Fracture 131(1), 59–78 (2005)

    Article  CAS  Google Scholar 

  21. D. Arola, C.L. Williams, Estimating the fatigue stress concentration factor of machined surfaces. Int. J. Fatigue 24(9), 923–930 (2002)

    Article  CAS  Google Scholar 

  22. B. Zhang, H. Liu, H. Bai et al., Ratchetting–multiaxial fatigue damage analysis in gear rolling contact considering tooth surface roughness. Wear 428–429, 137–146 (2019)

    Google Scholar 

  23. S.K. As, B. Skallerud, B.W. Tveiten, Surface roughness characterization for fatigue life predictions using finite element analysis. Int. J. Fatigue 30(12), 2200–2209 (2008)

    Article  Google Scholar 

  24. Z. Cheng, R. Liao, W. Lu, Surface stress concentration factor via Fourier representation and its application for machined surfaces. In. J. Solids. Struct. 113–114, 108–117 (2017)

    Article  Google Scholar 

  25. J. Zhang, A. Fatemi, Surface roughness effect on multiaxial fatigue behavior of additive manufactured metals and its modeling. Theor. Appl. Fract. Mech. 103, 102260 (2019)

    Article  CAS  Google Scholar 

  26. M. Suraratchai, J. Limido, C. Mabru et al., Modelling the influence of machined surface roughness on the fatigue life of aluminium alloy. Int. J. Fatigue 30(12), 2119–2126 (2008)

    Article  CAS  Google Scholar 

  27. G.I. Taylor, The mechanism of plastic deformation of crystals. Part I. Theoretical [M], in Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character (1934)

  28. R. Hill, Generalized constitutive relations for incremental deformation of metal crystals by multislip. J. Mech. Phys. Solids 14(2), 95–102 (1966)

    Article  CAS  Google Scholar 

  29. R. Hill, J.R. Rice, Constitutive analysis of elastic-plastic crystals at arbitrary strain. J. Mech. Phys. Solids 20(6), 401–413 (1972)

    Article  Google Scholar 

  30. J.L. Bassani, T.Y. Wu, Latent hardening in single crystals. II. Analytical characterization and predictions. Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 435(93), 21–41 (1991)

    Google Scholar 

  31. V. Levkovitch, R. Sievert, B. Svendsen, Simulation of deformation and lifetime behavior of a fcc single crystal superalloy at high temperature under low-cycle fatigue loading. Int. J. Fatigue 28(12), 1791–1802 (2006)

    Article  CAS  Google Scholar 

  32. Z. Wen, H. Pei, H. Yang et al., A combined CP theory and TCD for predicting fatigue lifetime in single-crystal superalloy plates with film cooling holes. Int. J. Fatigue 111, 243–255 (2018)

    Article  CAS  Google Scholar 

  33. J. Wang, Z. Wen, X. Zhang et al., Effect mechanism and equivalent model of surface roughness on fatigue behavior of nickel-based single crystal superalloy. Int. J. Fatigue 125, 101–111 (2019)

    Article  CAS  Google Scholar 

  34. S. Sreenivasan, S.K. Mishra, K. Dutta, Ratcheting strain and its effect on low cycle fatigue behavior of Al 7075-T6 alloy. Mater. Sci. Eng. A 698, 46–53 (2017)

    Article  CAS  Google Scholar 

  35. S.K. Paul, S. Sivaprasad, S. Dhar et al., Ratcheting and low cycle fatigue behavior of SA333 steel and their life prediction. J. Nucl. Mater. 401(1), 17–24 (2010)

    Article  CAS  Google Scholar 

  36. D. Novovic, R.C. Dewes, D.K. Aspinwall et al., The effect of machined topography and integrity on fatigue life. Int. J. Mach. Tools Manuf. 44(2–3), 125–134 (2004)

    Article  Google Scholar 

  37. T. Zhou, H. Ding, X. Ma et al., Microstructure and stress-rupture life of high W-content cast Ni-based superalloy after 1000–1100 °C thermal exposures. Mater. Sci. Eng. A 725, 299–308 (2018)

    Article  CAS  Google Scholar 

  38. G. Owolabi, O. Okeyoyin, O. Bamiduro et al., Fatigue strength reduction factor for polycrystalline nickel base superalloy with and without non-metallic inclusions. Proc. Eng. 74, 297–302 (2014)

    Article  CAS  Google Scholar 

  39. L.T. Lu, J.W. Zhang, K. Shiozawa, Influence of inclusion size on S–N curve characteristics of high-strength steels in the giga-cycle fatigue regime. Fatigue. Fract. Eng. Mater. Struct. 32(8), 647–655 (2009)

    Article  CAS  Google Scholar 

  40. S. Saberifar, A.R. Mashreghi, M. Mosalaeepur et al., The interaction between non-metallic inclusions and surface roughness in fatigue failure and their influence on fatigue strength. Mater. Des. 35, 720–724 (2012)

    Article  CAS  Google Scholar 

  41. A. Majumdar, C.L. Tien, Fractal charaterization and simulation of rough surfaces. Wear 136(2), 313–327 (1990)

    Article  Google Scholar 

  42. Y. Zhang, Z. Wen, H. Pei et al., Equivalent method of evaluating mechanical properties of perforated Ni-based single crystal plates using artificial neural networks. Comput. Method. Appl. Mech. 360, 112725 (2020)

    Article  Google Scholar 

  43. H. Neuber, Theory of Notch Stresses (Spring Verlag, Berlin, 1958)

    Google Scholar 

Download references

Acknowledgements

The research was supported by the National Natural Science Foundation of China (NO.51875461, 51875462), the Fundamental Research Funds for the Central Universities (3102019PY001) and National Science and Technology Major Project (2017-IV-0003-0040, 2017-V-0003-0052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. X. Wen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J.J., Wen, Z.X., Zhang, Y.M. et al. Experimental Characterization and Computational Modelling for Fatigue Behavior of a Ni-Based Single Crystal Alloy Considering Surface Roughness. Met. Mater. Int. 27, 4383–4396 (2021). https://doi.org/10.1007/s12540-020-00784-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00784-9

Keywords

Navigation