Skip to main content
Log in

Effect of Laser Power on Tensile Performance of TA15 Laser-Welded Lock Bottom Joint

  • Published:
Metals and Materials International Aims and scope Submit manuscript


Taking TA15 titanium alloy as the research object, laser welding experiments of are performed on the lock-bottom joints, and the microstructure and tensile performance of the joints are analyzed. The laser welding speed is constant and the laser power is 1000 w, 1300 kw, 1600 kw respectively. The bottom weld width and the width of high temperature heat-affected zone (HT-HAZ) increase significantly as laser power increase. The microstructure of the heat-affected zone (HAZ) is relatively complicated, mainly composed of secondary α, acicular α structure and β. The microstructure at the weld metal is comprised of the martensite α′ and acicular α. The tensile strength, fracture morphology and chemical composition of the welded joint are studied by tensile test, scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) analysis techniques. The results show that all the specimens fractured near the heat-affected zone, and the fracture is a ductile fracture in the shape of a dimple. The tensile strength of welded joint decreases with the increase of laser power. When the laser power is 1.0 kw, 1.3 kw and 1.6 kw, the tensile strength is 723 MPa, 705 MPa and 695 MPa respectively, which is 64.55%, 62.95% and 62.05% of the base material strength. EDS results show that Mo and V elements are the strengthening elements, while the burning loss of Mo and V reduce the strength of the joint.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others


  1. M. Gao, Z.M. Wang, X.Y. Li, X.Y. Zeng, Laser keyhole welding of dissimilar Ti–6Al–4V titanium alloy to AZ31B magnesium alloy. Metall. Mater. Trans. A. 43(1), 163–172 (2012)

    Article  CAS  Google Scholar 

  2. X.Z. Li, S.B. Hu, J.Z. Xiao, L.B. Ji, Effects of the heterogeneity in the electron beam welded joint on fatigue crack growth in Ti–6Al–4V alloy. Mater. Sci. Eng. A. 529, 170–176 (2011)

    Article  CAS  Google Scholar 

  3. J.J. Li, J.Q. Shen, S.S. Hu, H. Zhang, X.Z. Bu, Microstructure and mechanical properties of Ti–22Al–25Nb/TA15 dissimilar joint fabricated by dual-beam laser welding. Opt. Laser Technol. 109, 123–130 (2019)

    Article  CAS  Google Scholar 

  4. Z.C. Sun, H. Yang, Microstructure and mechanical properties of TA15 titanium alloy under multi-step local loading forming. Mater. Sci. Eng. A. 523(1–2), 184–192 (2009)

    Article  Google Scholar 

  5. M.W. Wei, S.Y. Chen, J. Liang, C.S. Liu, Effect of atomization pressure on the breakup of TA15 titanium alloy powder prepared by EIGA method for laser 3D printing. Vacuum 143, 185–194 (2017)

    Article  CAS  Google Scholar 

  6. K.Z. Zhang, Z.L. Lei, Y.B. Chen, M. Liu, Y. Liu, Microstructure characteristics and mechanical properties of laser-TIG hybrid welded dissimilar joints of Ti–22Al–27Nb and TA15. Opt. Laser Technol. 73, 139–145 (2015)

    Article  Google Scholar 

  7. G. Liu, K. Wang, B. He, M. Huang, S. Yuan, Mechanism of saturated flow stress during hot tensile deformation of a TA15 Ti alloy. Mater. Design. 86, 146–151 (2015)

    Article  CAS  Google Scholar 

  8. G. Lütjering, J.C. Williams, Titanium (Springer, Berlin, 2003)

    Book  Google Scholar 

  9. Y. Zhang, Y.D. Gao, J.P. Zhou, D.Q. Sun, H.M. Li, Microstructure and mechanical property improvement of dissimilar metal joints for TC4 Ti alloy to 304 stainless steel using TA2/Q235 composite interlayer. Met. Mater. Int. 12, 1–12 (2019)

    Google Scholar 

  10. Y. He, X.G. Fan, Z.C. Sun, L.G. Guo, M. Zhan, Recent developments in plastic forming technology of titanium alloys. Sci. China Technol. Sci. 54(02), 490–501 (2011)

    Article  Google Scholar 

  11. V. Dhinakaran, N.S. Shanmugam, K. Sankaranarayanasamy, Experimental investigation and numerical simulation of weld bead geometry and temperature distribution during plasma arc welding of thin Ti–6Al–4V sheets. J. Strain. Anal. Eng. Des. 52(01), 30–44 (2017)

    Article  Google Scholar 

  12. S. Mironov, Y.S. Sato, H. Kokawa, Friction-stir welding and processing of Ti–6Al–4V titanium alloy: a review. J. Mater. Sci. Technol. 34(01), 58–72 (2018)

    Article  Google Scholar 

  13. I. Tomashchuk, D. Grevey, P. Sallamand, Dissimilar laser welding of AISI 316L stainless steel to Ti6–Al4–6V alloy via pure vanadium interlayer. Mat. Sci. Eng. A Struct. 622, 37–45 (2015)

    Article  CAS  Google Scholar 

  14. D.G. Sanders, M. Ramulu, P.D. Edwards, Superplastic forming of friction stir welds in titanium alloy 6Al–4V: preliminary results. Mater. Werkst. 39, 353–357 (2008)

    Article  CAS  Google Scholar 

  15. X.H. Zhan, T.Y. Yan, Q.Y. Gao, Z.X. Zhu, H.C. Bu, Z.D. Wang, The porosity formation mechanism in the laser welded joint of TA15 titanium alloy. Mater. Res. Express. 6(7), 10 (2019)

    Google Scholar 

  16. H.E. Emre, S. Arslan, Effect of laser welding on microstructure and mechanical properties of biomedical Ti6Al4V. Appl. Phys. A Mater. 125(11), 12 (2019)

    Google Scholar 

  17. F. Caiazzo, A. Caggiano, Investigation of laser welding of Ti alloys for cognitive process parameters selection. Materials 11(4), 11 (2018)

    Article  Google Scholar 

  18. X.H. Zhan, J.J. Zhou, W.H. Sun, J.C. Chen, Y.H. Wei, Effect of external applied steady magnetic field on the morphology of laser welding joint of 4-mm 2024 aluminum alloy. Appl. Phys. A Mater. 123(1), 10 (2017)

    Article  Google Scholar 

  19. K.Z. Zhang, L.C. Ni, Z.L. Lei, Y.B. Chen, X. Hu, Microstructure and tensile properties of laser welded dissimilar Ti–22Al–27Nb and TA15 joints. Int. J. Adv. Manuf. Technol. 87(5–8), 1685–1692 (2016)

    Article  Google Scholar 

  20. L.M. Liu, X.F. Hao, X. Du, Microstructure characteristics and mechanical properties of laser—TIG hybrid welding joint of TA15 titanium alloy. Mater. Res. Innov. 12(3), 60–61 (2008)

    Google Scholar 

  21. K.H. Wang, G. Liu, W. Tao, J. Zhao, K. Huang, Study on the mixed dynamic recrystallization mechanism during the globularization process of laser-welded TA15 Ti-alloy joint under hot tensile deformation. Mater. Charact. 126, 57–63 (2017)

    Article  Google Scholar 

  22. W.F. Xu, Z.L. Zhang, Microstructure and mechanical properties of laser beam welded TC4/TA15 dissimilar joints. Trans. Nonferr. Metal. Soc. China 26(12), 3135–3146 (2016)

    Article  CAS  Google Scholar 

  23. J.Q. Shen, B. Li, S.S. Hu, H. Zhang, X.Z. Bu, Comparison of single-beam and dual-beam laser welding of Ti–22Al–25Nb/TA15 dissimilar titanium alloys. Opt. Laser. Technol. 93, 118126 (2017)

    Article  Google Scholar 

  24. D.L. Li, S.S. Hu, J.Q. Shen, H. Zhang, X.Z. Bu, Microstructure and mechanical properties of laser-welded joints of Ti–22Al–25Nb/TA15 dissimilar titanium alloys. J. Mater. Eng. Perform. 25(5), 1880–1888 (2016)

    Article  CAS  Google Scholar 

  25. S.R.E. Hosseini, K. Feng, P.L. Nie, K. Zhang, J. Huang, Y. Chen, D. Shu, Z.G. Li, B.C. Guo, S. Xue, Fracture surface characterization of laser welding processed Ti alloy to stainless steel joints. Weld. World 62(5), 947–960 (2018)

    Article  CAS  Google Scholar 

  26. X.H. Zhan, Q.Y. Peng, Y.H. Wei, W.M. Ou, Experimental and simulation study on the microstructure of TA15 titanium alloy laser beam welded joints. Opt. Laser Technol. 94, 279289 (2017)

    Article  Google Scholar 

  27. K.J. Song, Y.H. Wei, Z.B. Dong, X.H. Zhan, W.J. Zheng, K. Fang, Numerical simulation of b to a phase transformation in heat affected zone during welding of TA15 alloy. Comput. Mater. Sci. 72, 93–100 (2013)

    Article  CAS  Google Scholar 

  28. H. Zhang, S.S. Hu, J.Q. Shen, D.L. Li, X.Z. Bu, Effect of laser beam offset on microstructure and mechanical properties of pulsed laser welded BTi–6431S/TA15 dissimilar titanium alloy. Opt. Laser Technol. 74, 158–166 (2015)

    Article  CAS  Google Scholar 

Download references


The authors gratefully acknowledge the financial support of the project from National Key Research &D program of China (2017YFB1301600).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Xiaohong Zhan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, N., Zhan, X., Chen, S. et al. Effect of Laser Power on Tensile Performance of TA15 Laser-Welded Lock Bottom Joint. Met. Mater. Int. 27, 4645–4656 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: