Skip to main content
Log in

New Die Design Configuration for Grain Refinement by Hollow Twist Extrusion (HTE) Process

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The severe plastic deformation (SPD) processes used for applying an extensive shear plastic strain in the material and consequently grain refinement and increase in the strength of materials. The strain distribution is very important and more homogenous plastic strain is desired in SPD process modifications. In this article, four different die configurations will be investigated during the hollow twist extrusion (HTE) process and the plastic strain distribution will be compared within a hollow section. The die configurations are similar slope line angle of inner and outer dies (SD), opposite slope line angle between the inner and outer dies (OD), outer die with twist zone and flat inner die (FI) and inner die with twist zone and flat outer die (FO). The Von-Mises stress, plastic strain, and material deformation are studied by using a finite element model which was developed in the ABAQUS finite element software. The results show that the FI and FO die configuration produce higher plastic strains than SD die configuration, but the strain homogeneity is not satisfactory. The plastic strain is higher and more homogenous for OD die configuration in comparison to the other die configurations. The required force for twist extrusion of the billet is almost equal for FI and FO die configuration (~ 216 kN) and increases to about 256 kN for SD die configuration (16% increase). The required force for OD die configuration increased once more to 370 kN (44.5% increase). The element distortion along the two defined paths determined the material flow during the HTE process. The flat die retards the material flow for FI and FO die configurations. A significantly material flow will happen for OD die configuration. The element distortion leads to better material mixing in OD die configuration and consequently higher magnitude and more homogenous plastic strain distribution and higher grain refinement will be obtained.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.Z. Valiev, The new trends in fabrication of bulk nanostructured materials by SPD processing. J. Mater. Sci. 42(5), 1483–1490 (2007). https://doi.org/10.1007/s10853-006-1281-3

    Article  CAS  Google Scholar 

  2. V.M. Segal, Materials processing by simple shear. Mater. Sci. Eng. A 197(2), 157–164 (1995). https://doi.org/10.1016/0921-5093(95)09705-8

    Article  Google Scholar 

  3. A. Khosravifard, M. Jahedi, A.H. Yaghtin, Three dimensional finite element study on torsion extrusion processing of 1050 aluminum alloy. Trans. Nonferrous Met. Soc. China 22(11), 2771–2776 (2012). https://doi.org/10.1016/S1003-6326(11)61531-8

    Article  CAS  Google Scholar 

  4. D.J. Lee, H.S. Kim, Finite element analysis for the geometry effect on strain inhomogeneity during high-pressure torsion. J. Mater. Sci. 49(19), 6620–6628 (2014). https://doi.org/10.1007/s10853-014-8283-3

    Article  CAS  Google Scholar 

  5. N. Tsuji, Y. Saito, H. Utsunomiya, S. Tanigawa, Ultra-fine grained bulk steel produced by accumulative roll-bonding (ARB) process. Scr. Mater. 40(7), 795–800 (1999). https://doi.org/10.1016/S1359-6462(99)00015-9

    Article  CAS  Google Scholar 

  6. N. Pardis, B. Talebanpour, R. Ebrahimi, S. Zomorodian, Cyclic expansion-extrusion (CEE): a modified counterpart of cyclic extrusion-compression (CEC). Mater. Sci. Eng. A 528(25–26), 7537–7540 (2011). https://doi.org/10.1016/j.msea.2011.06.059

    Article  CAS  Google Scholar 

  7. M.I. Latypov, I.V. Alexandrov, Y.E. Beygelzimer, S. Lee, H.S. Kim, Finite element analysis of plastic deformation in twist extrusion. Comput. Mater. Sci. 60, 194–200 (2012). https://doi.org/10.1016/j.commatsci.2012.03.035

    Article  CAS  Google Scholar 

  8. Y. Beygelzimer, D. Orlov, V. Varyukhin, A new severe plastic deformation method twist extrusion, in Ultrafine Grained Materials II, ed. by Y.T. Zhu, T.G. Langdon, R.S. Mishra, S.L. Setniatin, M.J. Saran, T.C. Lowe (Wiley, Hoboken, 2013), pp. 297–304

    Chapter  Google Scholar 

  9. Y.E. Beygelzimer et al., Features of twist extrusion: method, structures & material properties. Solid State Phenom. 114, 69–78 (2006). https://doi.org/10.4028/www.scientific.net/SSP.114.69

    Article  CAS  Google Scholar 

  10. Y. Beygelzimer, A. Reshetov, S. Synkov, O. Prokofeva, R. Kulagin, Kinematics of metal flow during twist extrusion investigated with a new experimental method. J. Mater. Process. Technol. 209(7), 3650–3656 (2009). https://doi.org/10.1016/j.jmatprotec.2008.08.022

    Article  CAS  Google Scholar 

  11. Y. Beygelzimer, V. Varyukhin, S. Synkov, D. Orlov, Useful properties of twist extrusion. Mater. Sci. Eng. A 503(1), 14–17 (2009). https://doi.org/10.1016/j.msea.2007.12.055

    Article  CAS  Google Scholar 

  12. Y. Beygelzimer et al., Planar twist extrusion versus twist extrusion. J. Mater. Process. Technol. 211(3), 522–529 (2011). https://doi.org/10.1016/j.jmatprotec.2010.11.006

    Article  CAS  Google Scholar 

  13. R. Kulagin, M.I. Latypov, H.S. Kim, V. Varyukhin, Y. Beygelzimer, “Cross flow during twist extrusion: theory, experiment, and application. Metall. Mater. Trans. A 44(7), 3211–3220 (2013). https://doi.org/10.1007/s11661-013-1661-7

    Article  CAS  Google Scholar 

  14. A. Reshetov, R. Kulagin, A. Korshunov, Y. Beygelzimer, The occurrence of ideal plastic state in CP titanium processed by twist extrusion. Adv. Eng. Mater. 20(5), 1–8 (2018). https://doi.org/10.1002/adem.201700899

    Article  CAS  Google Scholar 

  15. Y. Beygelzimer, R. Kulagin, Y. Estrin, L.S. Toth, H.S. Kim, M.I. Latypov, Twist extrusion as a potent tool for obtaining advanced engineering materials: a review. Eng. Mater Adv (2017). https://doi.org/10.1002/adem.201600873

    Article  Google Scholar 

  16. S.A.A. Akbari Mousavi, S. Ranjbar Bahadori, A.R. Shahab, Numerical and experimental studies of the plastic strains distribution using subsequent direct extrusion after three twist extrusion passes. Mater. Sci. Eng. A 527(16–17), 3967–3974 (2010). https://doi.org/10.1016/j.msea.2010.02.077

    Article  CAS  Google Scholar 

  17. S.A.A. Akbari Mousavi, A.R. Shahab, M. Mastoori, Computational study of Ti-6Al-4V flow behaviors during the twist extrusion process. Mater. Des. 29(7), 1316–1329 (2008). https://doi.org/10.1016/j.matdes.2007.07.009

    Article  CAS  Google Scholar 

  18. S.A.A. Akbari Mousavi, S.R. Bahadori, The effects of post annealing on the mechanical properties, microstructure and texture evolutions of pure copper deformed by twist extrusion process. Mater. Sci. Eng. A 528(3), 1242–1246 (2011). https://doi.org/10.1016/j.msea.2010.10.007

    Article  CAS  Google Scholar 

  19. S.R. Bahadori, S.A.A.A. Mousavi, Examination of an aluminum alloy behavior under different routes of twist extrusion processing. Mater. Sci. Eng. A 528(21), 6527–6534 (2011). https://doi.org/10.1016/j.msea.2011.04.092

    Article  CAS  Google Scholar 

  20. Y.E. Beygelzimer, O.V. Prokofeva, V.N. Varyukhin, Structural changes in metals subjected to direct or twist extrusion: mathematical simulation. Russ. Metall. 2006(1), 25–32 (2006). https://doi.org/10.1134/S0036029506010058

    Article  Google Scholar 

  21. J.G. Kim, M. Latypov, N. Pardis, Y.E. Beygelzimer, H.S. Kim, Finite element analysis of the plastic deformation in tandem process of simple shear extrusion and twist extrusion. Mater. Des. 83, 858–865 (2015). https://doi.org/10.1016/j.matdes.2015.06.034

    Article  Google Scholar 

  22. F.J. Kalahroudi, A.R. Eivani, H.R. Jafarian, A. Amouri, R. Gholizadeh, Inhomogeneity in strain, microstructure and mechanical properties of AA1050 alloy during twist extrusion. Mater. Sci. Eng. A 667, 349–357 (2016). https://doi.org/10.1016/j.msea.2016.04.087

    Article  CAS  Google Scholar 

  23. U. Mohammed Iqbal, V.S. Senthil Kumar, An analysis on effect of multipass twist extrusion process of AA6061 alloy. Mater. Des. 50, 946–953 (2013). https://doi.org/10.1016/j.matdes.2013.03.066

    Article  CAS  Google Scholar 

  24. U. Mohammed Iqbal, V.S. Senthil Kumar, S. Gopalakannan, Application of response surface methodology in optimizing the process parameters of Twist extrusion process for AA6061-T6 aluminum alloy. Meas. J. Int. Meas. Confed. 94, 126–138 (2016). https://doi.org/10.1016/j.measurement.2016.07.085

    Article  Google Scholar 

  25. V. Beloshenko, I. Vozniak, Y. Beygelzimer, Y. Estrin, R. Kulagin, Severe plastic deformation of polymers. Mater. Trans. 60(7), 1192–1202 (2019). https://doi.org/10.2320/matertrans.MF201912

    Article  CAS  Google Scholar 

  26. V.Q. Vu et al., Obtaining hexagon-shaped billets of copper with gradient structure by twist extrusion. Mater. Charact. 153, 215–223 (2019). https://doi.org/10.1016/j.matchar.2019.04.042

    Article  CAS  Google Scholar 

  27. L. Kunčická, R. Kocich, V. Ryukhtin, J.C.T. Cullen, N.P. Lavery, Study of structure of naturally aged aluminium after twist channel angular pressing. Mater. Charact. 152, 94–100 (2019). https://doi.org/10.1016/j.matchar.2019.03.045

    Article  CAS  Google Scholar 

  28. R. Ebrahimi, A. Rezvani, E. Bagherpour, Circular simple shear extrusion as an alternative for simple shear extrusion technique for producing bulk nanostructured materials. Procedia Manuf. 15, 1502–1508 (2018). https://doi.org/10.1016/j.promfg.2018.07.328

    Article  Google Scholar 

  29. A.W. Hussein, M.A. Mahdi, R.S. Abid, Helical extrusion process of general polygonal section shapes through curved dies. J. Manuf. Process. 38, 38–48 (2018). https://doi.org/10.1016/j.jmapro.2018.12.032

    Article  Google Scholar 

  30. S.M. Alavizadeh, K. Abrinia, A. Parvizi, Twisted multi channel angular pressing (TMCAP) as a novel severe plastic deformation method. Met. Mater. Int. 26(2), 260–271 (2020). https://doi.org/10.1007/s12540-019-00319-x

    Article  Google Scholar 

  31. G. Ranjbari, A. Doniavi, M. Shahbaz, Numerical modelling and simulation of vortex extrusion as a severe plastic deformation technique using response surface methodology and finite element analysis. Mater. Int. Met. (2020). https://doi.org/10.1007/s12540-020-00635-7

    Article  Google Scholar 

  32. J. Joudaki, M. Safari, S.M. Alhosseini, Hollow twist extrusion: introduction, strain distribution, and process parameters investigation. Met. Mater. Int. 25(6), 1593–1602 (2019). https://doi.org/10.1007/s12540-019-00301-7

    Article  CAS  Google Scholar 

  33. Y. Estrin, Y. Beygelzimer, R. Kulagin, Design of architectured materials based on mechanically driven structural and compositional patterning. Adv. Eng. Mater. 21(9), 1900487 (2019). https://doi.org/10.1002/adem.201900487

    Article  CAS  Google Scholar 

  34. R. Kulagin, Y. Beygelzimer, A. Bachmaier, R. Pippan, Y. Estrin, Benefits of pattern formation by severe plastic deformation. Appl. Mater. Today 15, 236–241 (2019). https://doi.org/10.1016/j.apmt.2019.02.007

    Article  Google Scholar 

  35. Y. Beygelzimer, R. Kulagin, Y. Estrin, Severe plastic deformation as a way to produce architectured materials, in Architectured Materials in Nature and Engineering, ed. by Y. Estrin, Y. Bréchet, J. Dunlop, P. Fratzl (Springer, New York, 2019), pp. 231–255

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Joudaki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joudaki, J., Safari, M. & Alhosseini, S.M. New Die Design Configuration for Grain Refinement by Hollow Twist Extrusion (HTE) Process. Met. Mater. Int. 27, 667–675 (2021). https://doi.org/10.1007/s12540-020-00725-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00725-6

Keywords

Navigation