Skip to main content
Log in

Effect of Discharge Energy of Magnetic Pulse Compaction on the Powder Compaction Characteristics and Spring Back Behavior of Copper Compacts

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Magnetic pulse compaction (MPC) technology had unique compaction advantages compared to traditional powder compaction methods. In this study, the pure copper compacts have been consolidated by MPC technique. The effect of discharge energy on the microstructures, relative density, micro hardness, strain and stress of copper compacts were analyzed via optical microscopy, scanning electron microscopy, hardness tester and FEM simulation. The relationship between discharge energy and spring back was analyzed by numerical calculation. Results showed that the MPC method had the advantages to refine powder particles. The relative density of copper compacts reached 96% when the discharge energy was 9 kJ. Stress concentration was occurred at the upper edge of the powder body, and propagated to the upper center, lower edge and middle position of the powder body. The powder body could have a uniform strain distribution in a short period of time when the discharge energy was greater than 7 kJ. There was a linear relationship between the relative density and the logarithm of Vickers hardness. The axial and radial spring back both increased with the increase of discharge energy. When the discharge energy was 9 kJ, the axial and radial spring back was 2.36% and 0.42%.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

  1. L. Bolzoni, F. Yang, J. Mech, Behav. Biomed. 97, 41–48 (2019)

    Article  CAS  Google Scholar 

  2. H. Kulkarni, V.V. Dabhade, J Manuf. Process. 44, 1–18 (2019)

    Article  CAS  Google Scholar 

  3. Z. Meng, S. Huang, W. Sun, J. Wuhan Univ. Technol. 22, 714–717 (2007)

    Article  CAS  Google Scholar 

  4. Z. Tang, D. Hao, K. Tao, J. Chen, J. Zhang, J Mater Process Tech. 263, 343–355 (2019)

    Article  CAS  Google Scholar 

  5. Z. Tang, S.F. Golovashchenko, J.F. Bonnen, A.V. Mamutov, A.J. Gillard, D. Bonnen, J. Mater. Process. Technol. 214(12), 2843–2857 (2014)

    Article  CAS  Google Scholar 

  6. M.A. Eryomina, S.F. Lomayeva, V.V. Tarasov et al., Met. Mater. Int. (2019). https://doi.org/10.1007/s12540-019-00531-9

    Article  Google Scholar 

  7. A.-G. Mamalis, A. Szalay, N. Göbl, I. Vajda, B. Raveau, Mater. Sci. Eng. B-Adv. 53, 119–124 (1998)

    Article  Google Scholar 

  8. H.-Y. Park, M.F. Kilicaslan, S.-J. Hong, Powder Technol. 224, 360–364 (2012)

    Article  CAS  Google Scholar 

  9. S. Yan, S. Huang, W. Liu, J. Hu, Yu. Lei, M. Zhou, Powder Technol. 306, 1–9 (2017)

    Article  CAS  Google Scholar 

  10. G.H. Lee, C.K. Rhee, M.K. Lee, W.W. Kim, V.V. Ivanov, Mater. Sci. Eng. A-Struct. 375, 604–608 (2004)

    Article  Google Scholar 

  11. R.C. Kyu, L. Geunhee, K. Wheung, I. Victor, A. Medvedev, A. Shtolz, S. Zayats, J. Metastab. Nanocrystal. Mater. 15, 757–762 (2003)

    Google Scholar 

  12. X.J. Yuan, Y.X. Zhuo, H. Yin, J. Guan, D. Khan, X. Qu, Rare Metal Mater. Eng. 40, 86–89 (2011). (In Chinese)

    Google Scholar 

  13. D.F. Khan, H. Yin, H. Li, Z. Abideen, Asadullah, X. Qu, M. Ellahi, Mater. Des. (1980-2015). 54, 149–153 (2014)

    Article  CAS  Google Scholar 

  14. V. Fartashvand, A. Abdullah, S.A.S. Vanini, Ultrason. Sonochem. 36, 155–161 (2017)

    Article  CAS  Google Scholar 

  15. X. An, Y. Zhang, Y. Zhang, S. Ynag, Metall. Mater. Trans. A 46, 3744–3752 (2015)

    Article  CAS  Google Scholar 

  16. R.S. Ransing, D.T. Gethin, A.R. Khoei, P. Mosbah, R.W. Lewis, Mater. Design. 21, 263–269 (2000)

    Article  CAS  Google Scholar 

  17. A. Krok, P. García-Triñanes, M. Peciar, C.Y. Wu, Chem. Eng. Res. Des. 110, 141–151 (2016)

    Article  CAS  Google Scholar 

  18. A.R. Khoei, Mater. Des. 23, 523–529 (2002)

    Article  Google Scholar 

  19. C. Deng, M. Liu, P. Molian, Powder Technol. 239, 36–46 (2013)

    Article  CAS  Google Scholar 

  20. J. Cui, D. Dong, X. Zhang, X. Huang, G. Lu, H. Jiang, G. Li, Int. J. Impact Eng 115, 1–9 (2018)

    Article  Google Scholar 

  21. H. Jiang, T. Luo, G. Li, X. Zhang, J. Cui, Int. J. Fatigue 105, 180–189 (2017)

    Article  CAS  Google Scholar 

  22. L.-H. Han, P.-R. Laity, R.-E. Cameron et al., J. Mater. Sci. 46, 5977–5990 (2011)

    Article  CAS  Google Scholar 

  23. H. Diarra, V. Mazel, A. Boillon, L. Rehault, V. Busignies, S. Bureau, P. Tchoreloff, Powder Technol. 224, 233–240 (2012)

    Article  CAS  Google Scholar 

  24. M. Zhou, S. Huang, H. Jianhua, Yu. Lei, F. Zou, S. Yan, M. Yang, Powder Technol. 313, 68–81 (2017)

    Article  CAS  Google Scholar 

  25. J.-S. Liu, Application of MSC. MARC in Material Processing Engineering (China Water & Power Press, Haidian, 2010)

    Google Scholar 

  26. S. Shima, M. Oyane, Int. J. Mech. Sci. 6, 285–291 (1976)

    Article  Google Scholar 

  27. G.D. McAdam, Tetsu to Hagane 168, 346–358 (1951)

    CAS  Google Scholar 

  28. X.P. Ren, E. Wang, W.C. Huo, Powder Metall. Technol. 1, 8–12 (1992). (In Chinese)

    Google Scholar 

  29. Z.H. Meng, S.Y. Huang, M. Yang, J. Mater. Process. Technol. 209(2), 672–678 (2009)

    Article  CAS  Google Scholar 

  30. H.-Y. Park, M.F. Kilicaslan, S.-J. Hong, Mater. Chem. Phys. 141(1), 208–215 (2013)

    Article  CAS  Google Scholar 

  31. C.L. Li, Q.S. Mei, J.Y. Li, F. Chen, Y. Ma, X.M. Mei, Scripta Mater. 153, 27–30 (2018)

    Article  CAS  Google Scholar 

  32. Z. Yan, F. Chen, Y. Cai, Powder Technol. 208(3), 596–599 (2011)

    Article  CAS  Google Scholar 

  33. P.Y. Huang, Theory of powder metallurgy, 2nd edn. (Metallurgical industry press, Beijing, 1982), pp. 184–185

    Google Scholar 

  34. M.A.J. Taleghani, E.M.R. Navas, J.M. Torralba, Mater. Design. 55, 674–682 (2014)

    Article  Google Scholar 

  35. H. Chtourou, M. Guillot. in Proceeding of the PM2TEC’95 Conference

  36. S. Garner, J. Strong, A. Zavaliangos, Powder Technol. 330, 357–370 (2018)

    Article  CAS  Google Scholar 

  37. D.F. Khan, H. Yin, H. Li, X. Qu, M. Khan, S. Ali, M.Z. Iqbal, Mater. Des. 50, 479–483 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project is supported by National Natural Science Foundation of China (No. 51975202) and the Natural Science Foundation of Hunan Province (2019JJ30005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjia Cui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Huang, X., Dong, D. et al. Effect of Discharge Energy of Magnetic Pulse Compaction on the Powder Compaction Characteristics and Spring Back Behavior of Copper Compacts. Met. Mater. Int. 27, 3385–3397 (2021). https://doi.org/10.1007/s12540-020-00698-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00698-6

Keywords

Navigation