Skip to main content
Log in

Simultaneous Improvement of Thermal Conductivity and Strength for Commercial A356 Alloy Using Strontium Modification Process

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The Aluminum–Silicon (Al–Si) die-casting alloys, such as the commercial A356 alloy, are expected to be used in heat-sink and the device with high thermal conductivity due to their high production efficiency of casting process. These fields also required them to possess sound mechanical properties. To meet these demands, the Strontium (Sr) was often utilized to modify the silicon phase. According to our current work, the secondary dendrite arm spacing of the α-Al grains prominently was decreased when 0.05%–0.25% strontium was added. The decrease of the secondary dendrite arm spacing (SDAS) lead to the enhancement of the mechanical strength as well as the improvement of the thermal and electrical conductivity. When the Sr dosage was 0.15% in the commercial A356 alloy, the strength and the thermal conductivity of the A356 alloy simultaneously reached the maximum value. The improvement of the electrical and thermal conductivity might by contributed by the formation of a good conductor, Al2Si2Sr phase, on the Si surface. Further investigations suggested that the improvement of thermal conductivity was mainly due to the modification effect of Sr on the eutectic Si phase, which enlarged the specific area between the α-Al/eutectic Si interface. The WDS analysis indicated that the solubility of Si decreased in aluminum matrix by increasing in the Sr dosage. However, the excessive dosage of strontium would result in the coarsening of the modified silicon phase, deteriorating the strength and the thermal and electrical conductivity of the modified A356 alloys.

Graphic Abstract

In this work, the commercial A356 alloy was modified by adding small amounts of strontium (Sr). This kind of aluminum alloy with sound fluidity could be formed by using casting process, and it was potential to be applied in the structural parts. After the Sr modification, the plate-like silicon (Si) phase was transformed to fibrous shape in the raw commercial A356. Meanwhile, it was found that the content of silicon in the Al solid solution was reduced.The XRD and SEM analysis suggested that the Al2Si2Sr phase was formed on the modified silicon phase, which was favorable to the conduction of free electron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The datum used to support the findings of this study have been included in the submission files of Manuscript.doc, Figures.doc and Tables.doc. The datasets and programs used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. R.N. Lumley, I.J. Polmear, H. Groot, J. Ferrier, Thermal characteristics of heat-treated aluminum high-pressure die-castings. Scripta Mater. 58, 1006–1009 (2008)

    Article  CAS  Google Scholar 

  2. M.C.S. Jr, A.R. Machado, W.F. Sales, M.A.S. Barrozo, E.O. Ezugwu, Machining of aluminum alloys: a review. Int. J. Adv. Manuf. Technol. 86, 1–14 (2016)

  3. W.M. Doyle, Aluminum alloys: structure and properties. Metal Science, (1976)@@

  4. J. Barcena, J. Maudes, M. Vellvehi, X. Jorda, I. Obieta, C. Guraya, L. Bilbao, C. Jiménez, C. Merveille, J.J.A.A. Coleto, Innovative packaging solution for power and thermal management of wide-bandgap semiconductor devices in space applications. Acta Astronaut 62, 422–430 (2008)

    Article  CAS  Google Scholar 

  5. Z. Yang, X. Wang, J. Wu, The influence of silicon content on the thermal conductivity of Al–Si/diamond composites, in: International Conference on Electronic Packaging Technology & High Density Packaging (2009)

  6. G.V. Voort, J.J.M. Asensio-Lozano, The Al–Si phase diagram. Microsc. Microanal. 15, 60–61 (2009)

    Article  Google Scholar 

  7. N.D. Alexopoulos, M. Tiryakiogˇlu, A.N. Vasilakos, S.K. Kourkoulis, The effect of Cu, Ag, Sm and Sr additions on the statistical distributions of Si particles and tensile properties in A357–T6 alloy castings. Mater. Sci. Eng. A 604, 40–45 (2014)

    Article  CAS  Google Scholar 

  8. A. Mazahery, M.O. Shabani, Modification mechanism and microstructural characteristics of eutectic Si in casting Al–Si alloys: a review on experimental and numerical studies. JOM 66, 726–738 (2014)

    Article  CAS  Google Scholar 

  9. F. Stadler, H. Antrekowitsch, W. Fragner, H. Kaufmann, E. Pinatel, P.J. Uggowitzer, The effect of main alloying elements on the physical properties of Al–Si foundry alloys. Mater. Sci. Eng. A 560, 481–491 (2013)

    Article  CAS  Google Scholar 

  10. F. Stadler, H. Antrekowitsch, W. Fragner, H. Kaufmann, P.J. Uggowitzer, The effect of nickel on the thermal conductivity of Al–Si cast alloys, in ICAA13 Pittsburgh, ed. by H. Weiland, A.D. Rollett, W.A. Cassada (Springer International Publishing, Cham, 2016), pp. 137–142

    Google Scholar 

  11. J.K. Chen, H.Y. Hung, C.F. Wang, N.K. Tang, Thermal and electrical conductivity in Al–Si/Cu/Fe/Mg binary and ternary Al alloys. J. Mater. Sci. 50, 5630–5639 (2015)

    Article  CAS  Google Scholar 

  12. Y.M. Kim, S.W. Choi, S.K. Hong, The behavior of thermal diffusivity change according to the heat treatment in Al–Si binary system. J. Alloys Compds. 687, 54–58 (2016)

    Article  CAS  Google Scholar 

  13. R. Landauer, J.J. Hall, Solid state physics. Science 160, 736–741 (2006)

    Article  Google Scholar 

  14. X. Cui, H. Cui, Y. Wu, X. Liu, The improvement of electrical conductivity of hypoeutectic Al–Si alloys achieved by composite melt treatment. J. Alloys Compds. 788, 1322–1328 (2019)

    Article  CAS  Google Scholar 

  15. S. Shabestari, S. Miresmaeili, S. Boutorabi, Effects of Sr-modification and melt cleanliness on melt hydrogen absorption of 319 aluminium alloy. J. Mater. Sci. 38, 1901–1907 (2003)

    Article  CAS  Google Scholar 

  16. S.G. Shabestari, F. Shahri, Influence of modification, solidification conditions and heat treatment on the microstructure and mechanical properties of A356 aluminum alloy. J. Mater. Sci. 39, 2023–2032 (2004)

    Article  CAS  Google Scholar 

  17. P. Rao, K. Das, B.S. Murty, M. Chakraborty, On the modification and segregation behavior of Sb in Al–7Si alloy during solidification. Mater. Lett. 62, 2013–2016 (2008)

    Article  CAS  Google Scholar 

  18. W. Prukkanon, N. Srisukhumbowornchai, C. Limmaneevichitr, Influence of Sc modification on the fluidity of an A356 aluminum alloy. J. Alloys Compds. 487, 453–457 (2009)

    Article  CAS  Google Scholar 

  19. M. Malekan, D. Dayani, A. Mir, Thermal analysis study on the simultaneous grain refinement and modification of 380.3 aluminum alloy. J. Therm. Anal. Calorim. 115, 393–399 (2014)

    Article  CAS  Google Scholar 

  20. H. Qiu, H. Yan, Z. Hu, Modification of near-eutectic Al–Si alloys with rare earth element samarium. J. Mater. Res. 29, 1270–1277 (2014)

    Article  CAS  Google Scholar 

  21. A.M. Samuel, H.W. Doty, S. Valtierra, F.H. Samuel, New method of eutectic silicon modification in cast Al–Si alloys. Int. J. Metalcast. 11, 475–493 (2017)

    Article  Google Scholar 

  22. J. Eiken, M. Apel, S.-M. Liang, R. Schmid-Fetzer, Impact of P and Sr on solidification sequence and morphology of hypoeutectic Al–Si alloys: combined thermodynamic computation and phase-field simulation. Acta Mater. 98, 152–163 (2015)

    Article  CAS  Google Scholar 

  23. S. Farahany, A. Ourdjini, T.A.A. Bakar, M.H. Idris, A new approach to assess the effects of Sr and Bi interaction in ADC12 Al–Si die casting alloy. Thermochim. Acta 575, 179–187 (2014)

    Article  CAS  Google Scholar 

  24. A. Knuutinen, K. Nogita, S.D. Mcdonald, A.K. Dahle, Modification of Al–Si alloys with Ba, Ca, Y and Yb. J. Light Met. 1, 229–240 (2001)

    Article  Google Scholar 

  25. K. Wang, W. Li, J. Du, L. Yang, P. Tang, Thermal analysis of in-situ Al2O3/SiO2(p)/Al composites fabricated by stir casting process. Thermochim. Acta 641, 29–38 (2016)

    Article  CAS  Google Scholar 

  26. H. Yamagata, W. Kasprzak, M. Aniolek, H. Kurita, J.H. Sokolowski, The effect of average cooling rates on the microstructure of the Al–20% Si high pressure die casting alloy used for monolithic cylinder blocks. J. Mater. Process. Technol. 203, 333–341 (2008)

    Article  CAS  Google Scholar 

  27. K. Wang, P. Tang, Y. Huang, Y. Zhao, W. Li, J. Tian, Characterization of microstructures and tensile properties of recycled Al–Si–Cu–Fe–Mn alloys with individual and combined addition of titanium and cerium. Scanning 2018, 1–14 (2018)

    Google Scholar 

  28. S.W. Choi, H.S. Cho, S. Kumai, Effect of the precipitation of secondary phases on the thermal diffusivity and thermal conductivity of Al–4.5Cu alloy. J. Alloys Compds. 688, 897–902 (2016)

    Article  CAS  Google Scholar 

  29. Z. Cong, D. Yong, S. Liu, S. Liu, W. Jie, B. Sundman, Microstructure and thermal conductivity of the as-cast and annealed Al–Cu–Mg–Si alloys in the temperature range from 25 °C to 400 °C). Int. J. Thermophys. 36, 2869–2880 (2015)

    Article  Google Scholar 

  30. M. Emamy, H. Abdizadeh, H.R. Lashgari, A.A. Najimi, The effect of sr and grain refining elements on the microstructure and tensile properties of A356–10%B4C metal matrix composite. Mech. Adv. Mater. Struct. 18, 210–217 (2011)

    Article  CAS  Google Scholar 

  31. A.M. Samuel, H.W. Doty, S. Valtierra, F.H.J.M. Samuel, Effect of grain refining and Sr-modification interactions on the impact toughness of Al–Si–Mg cast alloys. Mater. Des. 56, 264–273 (2014)

    Article  CAS  Google Scholar 

  32. Y. Zhang, N. Ma, Y. Le, S. Li, H. Wang, Mechanical properties and damping capacity after grain refinement in A356 alloy. Mater. Lett. 59, 2174–2177 (2005)

    Article  CAS  Google Scholar 

  33. Z. Zhang, X. Bian, Effect of Sr-modifying T reatment on hydrogen absorption of the melt and the shape of porosities. China Foundry 1, 5–8 (1999)

    Google Scholar 

  34. W. Lu, R. Wang, A study on the fading of Sr-modified Al–Si alloy. Special-cast and non-ferrous alloys, 1, 1–5 (1995)

  35. R. Herman, An introduction to electrical resistivity in geophysics. Am. J. Phys. 69, 943 (2001)

    Article  CAS  Google Scholar 

  36. M.H. Mulazimoglu, R.A.L. Drew, J.E. Gruzleski, The electrical conductivity of cast Al−Si alloys in the range 2 to 12.6 wt pct silicon. Metall. Trans. A 20, 383–389 (1989)

    Article  Google Scholar 

  37. Y. Wang, R. Guan, D. Hou, Z. Yang, W. Jiang, H. Liu, The effects of eutectic silicon on grain refinement in an Al–Si alloy processed by accumulative continuous extrusion forming. J. Mater. Sci. 52, 1137–1148 (2017)

    Article  CAS  Google Scholar 

  38. J. Barrirero, J. Li, M. Engstler, N. Ghafoor, P. Schumacher, M. Odén, F. Mücklich, Cluster formation at the Si/liquid interface in Sr and Na modified Al–Si alloys. Scripta Mater. 117, 16–19 (2016)

    Article  CAS  Google Scholar 

  39. J. Manickaraj, A. Gorny, Z. Cai, S. Shankar, X-ray nano-diffraction study of Sr intermetallic phase during solidification of Al–Si hypoeutectic alloy. Appl. Phys. Lett. 104, 145 (2014)

    Article  Google Scholar 

  40. A.M. Garay-Tapia, A.H. Romero, G. Trapaga, R. Arróyave, First-principles investigation of the Al–Si–Sr ternary system: ground state determination and mechanical properties. Intermetallics 21, 31–44 (2012)

    Article  CAS  Google Scholar 

  41. https://www.materialsproject.org/

  42. P. Olafsson, R. Sandstrom, Å. Karlsson, Comparison of experimental, calculated and observed values for electrical and thermal conductivity of aluminium alloys. J. Mater. Sci. 32, 4383–4390 (1997)

    Article  CAS  Google Scholar 

  43. W. Kurz, D.J. Fisher, Fundamentals of Solidification (Trans Tech Publications Ltd, Stafa-Zurich, 1998)

    Book  Google Scholar 

  44. S. Miresmaeili, J. Campbell, S. Shabestari, S. Boutorabi, Precipitation of Sr-rich intermetallic particles and their influence on pore formation in Sr-modified A356 alloy. Metall. Mater. Trans. A 36, 2341–2349 (2005)

    Article  Google Scholar 

  45. C. Su, D. Li, A.A. Luo et al., Effect of solute atoms and second phases on the thermal conductivity of Mg-RE alloys: a quantitative study. J. Alloys Compds. 747, 431–437 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research has bee supported by the Research Start-up Funds of DGUT (GC300502-52); Development Project (Key) of Dongguan Social Science and Technology (Grant No. 20185071401604); and Special Scientific, Technological Innovation Project of Universities in Guangdong Province (2017KTSCX177); Natural Science Foundation of China (51701039); and Science and Technology Planning Project of Guangdong Province of China (2017A010103033). The authors would like to express our appreciation to Dr. Yang Xiaopeng and Mr. Liu Yu for their help in the WDS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenfang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Li, W., Xu, W. et al. Simultaneous Improvement of Thermal Conductivity and Strength for Commercial A356 Alloy Using Strontium Modification Process. Met. Mater. Int. 27, 4742–4756 (2021). https://doi.org/10.1007/s12540-020-00669-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00669-x

Keywords

Navigation