Skip to main content
Log in

Process Parameter Optimization to Achieve Higher Impact Strength in SS316 Wire-Mesh and SiCp Reinforced Aluminum Composite Laminates Produced by Explosive Cladding

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this research paper, an empirical relationship is developed to envisage the impact strength of stainless steel wire-mesh and SiCp reinforced aluminum composite laminates produced through the explosive cladding. The process parameters viz., stand-off distance, explosive loading ratio, wire-mesh orientation and wt% of SiCp were optimized in four factors, three levels Box–Behnken design with full appropriateness. Analysis of Variance indicates that the wt% of SiCp possess the greatest sway on impact strength, trailed by stand-off distance, explosive loading ratio and wire-mesh orientation. The interfacial microstructure of the optimized condition reveals the presence of silicon carbide (SiC) as the wt% of SiCp is increased from 0 to 3%. X-ray diffraction analysis of the clad interface shows the absence of brittle intermetallic compounds. The impact fracture faces of the optimized clad reveals a ductile manner of fracture with elevated impact strength.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H. Ji, J. Wang, M. Li, Evolution of the bulk microstructure in 1100 aluminum builds fabricated by ultrasonic metal welding. J. Mater. Process. Technol. 214, 175–182 (2014). https://doi.org/10.1016/j.jmatprotec.2013.09.005

    Article  CAS  Google Scholar 

  2. N.R. Mandal, Solid state welding, in Ship Construction and Welding, ed. by N.R. Mandal (Springer, Singapore, 2017), pp. 221–234. https://doi.org/10.1007/978-981-10-2955-4_16

    Chapter  Google Scholar 

  3. S. Saravanan, K. Raghukandan, P. Kumar, Effect of wire mesh interlayer in explosive cladding of dissimilar grade aluminum plates. J. Cent. South Univ. 26, 604–611 (2019). https://doi.org/10.1007/s11771-019-4031-9

    Article  CAS  Google Scholar 

  4. A.K. Bhalla, J.D. Williams, Production of stainless steel wire-reinforced aluminium composite sheet by explosive compaction. J. Mater. Sci. 12, 522–530 (1977). https://doi.org/10.1007/BF00540277

    Article  CAS  Google Scholar 

  5. S. Saravanan, K. Raghukandan, Diffusion kinetics in explosive cladding of dissimilar alloys as described through the miedema model. Arch. Metall. Mater. 59, 1615–1618 (2014). https://doi.org/10.2478/amm-2014-0274

    Article  CAS  Google Scholar 

  6. M. Acarer, B. Demir, An investigation of mechanical and metallurgical properties of explosive welded aluminum-dual phase steel. Mater. Lett. 62, 4158–4160 (2008). https://doi.org/10.1016/j.matlet.2008.05.060

    Article  CAS  Google Scholar 

  7. M. Acarer, Electrical, corrosion, and mechanical properties of aluminum-copper joints produced by explosive welding. J. Mater. Eng. Perform. 21, 2375–2379 (2012). https://doi.org/10.1007/s11665-012-0203-6

    Article  CAS  Google Scholar 

  8. N. Zhang, W. Wang, X. Cao, J. Wu, The effect of annealing on the interface microstructure and mechanical characteristics of AZ31B/AA6061 composite plates fabricated by explosive welding. Mater. Des. 65, 1100–1109 (2015). https://doi.org/10.1016/j.matdes.2014.08.025

    Article  CAS  Google Scholar 

  9. F. Grignon, D. Benson, K.S.S. Vecchio, M.A.A. Meyers, Explosive welding of aluminum to aluminum: analysis, computations and experiments. Int. J. Impact Eng. 30, 1333–1351 (2004). https://doi.org/10.1016/j.ijimpeng.2003.09.049

    Article  Google Scholar 

  10. J.H. Han, J.P. Ahn, M.C. Shin, Effect of interlayer thickness on shear deformation behavior of AA5083 aluminum alloy/SS41 steel plates manufactured by explosive welding. J. Mater. Sci. 38, 13–18 (2003). https://doi.org/10.1023/A:1021197328946

    Article  CAS  Google Scholar 

  11. S. Saravanan, K. Raghukandan, K. Hokamoto, Improved microstructure and mechanical properties of dissimilar explosive cladding by means of interlayer technique. Arch. Civ. Mech. Eng. 16, 563–568 (2016). https://doi.org/10.1016/j.acme.2016.03.009

    Article  Google Scholar 

  12. B. Gülenç, Y. Kaya, A. Durgutlu, İ.T.T. Gülenç, M.S.S. Yıldırım, N. Kahraman, Production of wire reinforced composite materials through explosive welding. Arch. Civ. Mech. Eng. 16, 1–8 (2016). https://doi.org/10.1016/j.acme.2015.09.006

    Article  Google Scholar 

  13. I.A.A. Bataev, A.A.A. Bataev, V.I.I. Mali, D.V.V. Pavliukova, Structural and mechanical properties of metallic–intermetallic laminate composites produced by explosive welding and annealing. Mater. Des. 35, 225–234 (2012). https://doi.org/10.1016/j.matdes.2011.09.030

    Article  CAS  Google Scholar 

  14. M. Torkaman, H. Danesh-Manesh, M.M. Moshksar, M. Hosseini, Microstructure, mechanical properties and formability of CP-Ti/low carbon steel bimetallic sheet fabricated by explosive welding. Mater. Res. Express 6, 076542 (2019). https://doi.org/10.1088/2053-1591/ab15b8

    Article  CAS  Google Scholar 

  15. S. Saravanan, K. Raghukandan, K. Hokamoto, Effect of process parameters on microstructural and mechanical properties of Ti–SS 304L explosive cladding. J. Cent. South Univ. 24, 1245–1251 (2017). https://doi.org/10.1007/s11771-017-3528-3

    Article  CAS  Google Scholar 

  16. K. Raghukandan, Analysis of the explosive cladding of cu-low carbon steel plates. J. Mater. Process. Technol. 139, 573–577 (2003). https://doi.org/10.1016/S0924-0136(03)00539-9

    Article  CAS  Google Scholar 

  17. M. Honarpisheh, M. Mohammadi Jobedar, I. Alinaghian, Multi-response optimization on single-point incremental forming of hyperbolic shape Al-1050/Cu bimetal using response surface methodology. Int. J. Adv. Manuf. Technol. 96, 3069–3080 (2018). https://doi.org/10.1007/s00170-018-1812-5

    Article  Google Scholar 

  18. R. Zare, H. Sharifi, M.R. Saeri, M. Tayebi, Investigating the effect of SiC particles on the physical and thermal properties of Al6061/SiCp composite. J. Alloys Compd. 801, 520–528 (2019). https://doi.org/10.1016/J.JALLCOM.2019.05.317

    Article  CAS  Google Scholar 

  19. L.G. Robin, K. Raghukandan, S. Saravanan, Wire mesh/ceramic particle reinforced aluminium based composite using explosive cladding. Mater. Sci. Forum 910, 9–13 (2018). https://doi.org/10.4028/www.scientific.net/msf.910.9

    Article  Google Scholar 

  20. L.G. Robin, K. Raghukandan, S. Saravanan, Effect of SS 316 Wire mesh and SiCp ceramic particles on explosive cladding of dissimilar aluminium Al 5052 and Al 1100 plates subjected to varied loading ratios. J. Manuf. Eng. 12, 185–190 (2017)

    Google Scholar 

  21. S.L.C. Ferreira, R.E. Bruns, H.S. Ferreira, G.D. Matos, J.M. David, G.C. Brandão, E.G.P. da Silva, L.A. Portugal, P.S. dos Reis, A.S. Souza, W.N.L. dos Santos, Box–Behnken design: an alternative for the optimization of analytical methods. Anal. Chim. Acta 597, 179–186 (2007). https://doi.org/10.1016/j.aca.2007.07.011

    Article  CAS  Google Scholar 

  22. D. Baş, İ.H. Boyacı, Modeling and optimization I: usability of response surface methodology. J. Food Eng. 78, 836–845 (2007). https://doi.org/10.1016/J.JFOODENG.2005.11.024

    Article  Google Scholar 

  23. G. Shanthos Kumar, K. Raghukandan, S. Saravanan, N. Sivagurumanikandan, Optimization of parameters to attain higher tensile strength in pulsed Nd: YAG laser welded Hastelloy C-276–Monel 400 sheets. Infrared Phys. Technol. 100, 1–10 (2019). https://doi.org/10.1016/j.infrared.2019.05.002

    Article  CAS  Google Scholar 

  24. F. Ortega-Celaya, M.I. Pech-Canul, J. López-Cuevas, J.C. Rendón-Ángeles, M.A. Pech-Canul, Microstructure and impact behavior of Al/SiCp composites fabricated by pressureless infiltration with different types of SiCp. J. Mater. Process. Technol. 183, 368–373 (2007). https://doi.org/10.1016/J.JMATPROTEC.2006.10.029

    Article  CAS  Google Scholar 

  25. M. Acarer, B. Gülenç, F. Findik, The influence of some factors on steel/steel bonding quality on there characteristics of explosive welding joints. J. Mater. Sci. 39, 6457–6466 (2004). https://doi.org/10.1023/B:JMSC.0000044883.33007.20

    Article  CAS  Google Scholar 

  26. M.M. Hoseini-Athar, B. Tolaminejad, Weldability window and the effect of interface morphology on the properties of Al/Cu/Al laminated composites fabricated by explosive welding. Mater. Des. 86, 516–525 (2015). https://doi.org/10.1016/j.matdes.2015.07.114

    Article  CAS  Google Scholar 

  27. P. Tamilchelvan, K. Raghukandan, S. Saravanan, Kinetic energy dissipation in TI-SS explosive cladding with multi loading ratios. Iran. J. Sci. Technol. Trans. Mech. Eng. 38, 91–96 (2014)

    Google Scholar 

  28. M.D. Chadwick, P.W. Jackson, Explosive welding in planar geometries, in Explosive Welding in Planar Geometries, ed. by T.Z. Blazynski (Springer, Berlin, 1983), pp. 219–287. https://doi.org/10.1007/978-94-011-9751-9_7

    Chapter  Google Scholar 

  29. S. Saravanan, K. Raghukandan, Thermal kinetics in explosive cladding of dissimilar metals. Sci. Technol. Weld. Join. 17, 99–103 (2012). https://doi.org/10.1179/1362171811y.0000000080

    Article  CAS  Google Scholar 

  30. A. Loureiro, R. Mendes, J.B. Ribeiro, R.M. Leal, Effect of explosive ratio on explosive welding quality of copper to aluminium. Cienc. e Tecnol. Dos Mater. 29, 46–50 (2017). https://doi.org/10.1016/j.ctmat.2016.06.012

    Article  Google Scholar 

  31. C. Borchers, M. Lenz, M. Deutges, H. Klein, F. Gärtner, M. Hammerschmidt, H. Kreye, Microstructure and mechanical properties of medium-carbon steel bonded on low-carbon steel by explosive welding. Mater. Des. 89, 369–376 (2016). https://doi.org/10.1016/j.matdes.2015.09.164

    Article  CAS  Google Scholar 

  32. W. Sun, X. Li, H. Yan, Underwater explosive welding of tool steel. Explos. Shock Waves 36, 107–112 (2016). https://doi.org/10.11883/1001-1455(2016)01-0107-06

    Article  CAS  Google Scholar 

  33. X. Guo, Y. Ma, K. Jin, H. Wang, J. Tao, M. Fan, Effect of stand-off distance on the microstructure and mechanical properties of Ni/Al/Ni laminates prepared by explosive bonding. J. Mater. Eng. Perform. 26, 4235–4244 (2017). https://doi.org/10.1007/s11665-017-2890-5

    Article  CAS  Google Scholar 

  34. Å. Öberg, N. Mårtensson, J.-Å. Schweitz, Fundamental aspects of formation and stability of explosive welds. Metall. Trans. A. 16, 841–852 (1985). https://doi.org/10.1007/BF02814835

    Article  Google Scholar 

  35. G. Effenberg, S. Ilyenko, Al–Fe–Si (aluminium–iron–silicon), in Light Metal Systems Part 2. Selected Systems from Al–Cu–Fe to Al–Fe–Ti, ed. by G. Effenberg, S. Ilyenko (Springer, Berlin, 2005), pp. 359–409. https://doi.org/10.1007/10915967_23

    Chapter  Google Scholar 

  36. M.F. Ibrahim, E.M. Elgallad, S. Valtierra, H.W. Doty, F.H. Samuel, Metallurgical parameters controlling the eutectic silicon charateristics in Be-treated Al–Si–Mg alloys. Mater. (Basel) 9, 78 (2016). https://doi.org/10.3390/ma9020078

    Article  CAS  Google Scholar 

  37. N. Parvin, R. Assadifard, P. Safarzadeh, S. Sheibani, P. Marashi, Preparation and mechanical properties of SiC-reinforced Al6061 composite by mechanical alloying. Mater. Sci. Eng. A 492, 134–140 (2008). https://doi.org/10.1016/J.MSEA.2008.05.004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lalu Gladson Robin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data Availability

It is not possible to share the raw/processed data needed to reproduce these findings at this time as the data is also part of an ongoing study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robin, L.G., Raghukandan, K. & Saravanan, S. Process Parameter Optimization to Achieve Higher Impact Strength in SS316 Wire-Mesh and SiCp Reinforced Aluminum Composite Laminates Produced by Explosive Cladding. Met. Mater. Int. 27, 3493–3507 (2021). https://doi.org/10.1007/s12540-020-00641-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00641-9

Keywords

Navigation