Skip to main content
Log in

Phase Stability and Thermo-Physical Properties of Nickel-Aluminum Binary Chemically Disordered Systems via First-Principles Study

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The effect of Al content and crystal structures on ground state, phase stability, elasticity and thermodynamics of Ni1−xAlx (x = 0.25, 0.50 and 0.75) binary chemically disordered systems are investigated using first-principles method in combination with quasi-harmonic Debye-Grüneisen model. The special quasirandom structures are applied to model disordered body-centered cubic (bcc) and face-centered cubic (fcc) phases. The Gibbs free energy of mixing of equiatomic Ni0.5Al0.5 is the lowest. The nonmagnetic fcc structure’ Ni1−xAlx are predicted to be more favorable phases. Disordered Ni1−xAlx are less stable than ordered L21 Ni3Al and B2 NiAl, and L21 phase is the most likely to form a nuclear growth. The somewhat different impact of Al content on elastic properties has been extracted that the resistance to volume change, shear deformation and elastic deformation of Ni1−xAlx decrease with increasing Al content. For bcc and fcc phases, Ni0.75Al0.25 and Ni0.25Al0.75 are predicted to be ductile behavior, while Ni0.5Al0.5 exhibit brittleness. The structural, vibrational and electronic contributions are taken into account to study the thermodynamic properties at finite temperature. The lattice constants a and volumetric thermal expansion coefficient α of Ni1−xAlx systems increase with the increase of Al content. Nevertheless, it is decreasing for heat capacity Cv and C vibv . The vibrational entropy Svib of bcc Ni0.25Al0.75 is the largest in considered temperature. The α, C vibv and Svib of disordered Ni1−xAlx are larger than that of ordered Ni3Al and NiAl. Vibrational and electronic entropy are the dominating at finite temperature stabilization mechanism.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.C. Reed, The Superalloys: Fundamentals and Applications (Cambridge University Press, Cambridge, 2008)

    Google Scholar 

  2. D.B. Miracle, The physical and mechanical properties of NiAl. Acta Metall. Mater. 41, 649–684 (1993)

    CAS  Google Scholar 

  3. H.Y. Geng, N.X. Chen, M.H.F. Sluiter, First-principles equation of state and phase stability for the Ni-Al system under high pressures. Phys. Rev. B 70, 094203 (2004)

    Google Scholar 

  4. D. Shi, B. Wen, R. Melnik, S. Yao, T. Li, First-principles studies of Al-Ni intermetallic compounds. J. Solid State Chem. 182, 2664–2669 (2009)

    CAS  Google Scholar 

  5. Z. Wen, Y. Zhao, H. Hou, J. Tian, P. Han, First-principles study of Ni-Al intermetallic compounds under various temperature and pressure. Superlattice Microstruct. 103, 9–18 (2017)

    CAS  Google Scholar 

  6. D.E. Kim, S.L. Shang, Z.K. Liu, Effects of alloying elements on elastic properties of Ni3Al by first-principles calculations. Intermetallics 18, 1163–1171 (2010)

    CAS  Google Scholar 

  7. W. Zhao, Z. Sun, S. Gong, Synergistic effect of co-alloying elements on site preferences and elastic properties of Ni3Al: a first-principles study. Intermetallics 65, 75–80 (2015)

    CAS  Google Scholar 

  8. A. Kumar, A. Chernatynskiy, M. Hong, S.R. Phillpot, S.B. Sinnott, An ab initio investigation of the effect of alloying elements on the elastic properties and magnetic behavior of Ni3Al. Comput. Mater. Sci. 101, 39–46 (2015)

    CAS  Google Scholar 

  9. J.-Q. He, Y. Wang, M.-F. Yan, Y. Yang, L. Wang, First-principles study of NiAl microalloyed with Sc, Y, La and Nd. Comput. Mater. Sci. 50, 545–549 (2010)

    CAS  Google Scholar 

  10. A.V. Ponomareva, Y.K. Vekilov, I.A. Abrikosov, Effect of Re content on elastic properties of B2 NiAl from ab initio calculations. J. Alloys Compd. 586, S274–S278 (2014)

    CAS  Google Scholar 

  11. Y. Cao, P. Zhu, J. Zhu, Y. Liu, First-principles study of NiAl alloyed with Co. Comput. Mater. Sci. 111, 34–40 (2016)

    CAS  Google Scholar 

  12. Y.-J. Wang, C.-Y. Wang, A comparison of the ideal strength between L12 Co3(Al, W) and Ni3Al under tension and shear from first-principles calculations. Appl. Phys. Lett. 94, 261909 (2009)

    Google Scholar 

  13. M.-L. Huang, C.-Y. Wang, Effects of boron and carbon on the ideal strength of Ni solution and Ni3Al intermetallics: a first-principles study of tensile deformation. Comput. Mater. Sci. 140, 140–147 (2017)

    CAS  Google Scholar 

  14. Z. Wen, Y. Zhao, H. Li, Y. Zhang, S. Wang, H. Hou, Theoretical calculations of the ideal strength of Ni, NiAl and Ni3Al in tension and shear. Sci. Adv. Mater. 10, 1420–1426 (2018)

    CAS  Google Scholar 

  15. M. Šob, L. Wan, V. Vitek, The role of higher-symmetry phases in anisotropy of theoretical tensile strength of metals and intermetallics. Philos. Mag. B 78, 653–658 (1998)

    Google Scholar 

  16. A. van de Walle, P. Tiwary, M. de Jong, D.L. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang, L.-Q. Chen, Z.-K. Liu, Efficient stochastic generation of special quasirandom structures. Calphad 42, 13–18 (2013)

    Google Scholar 

  17. A. Zunger, S.-H. Wei, L. Ferreira, J.E. Bernard, Special quasirandom structures. Phys. Rev. Lett. 65, 353 (1990)

    CAS  Google Scholar 

  18. C. Jiang, L.-Q. Chen, Z.-K. Liu, First-principles study of constitutional point defects in B2 NiAl using special quasirandom structures. Acta Mater. 53, 2643–2652 (2005)

    CAS  Google Scholar 

  19. J. von Pezold, A. Dick, M. Friák, J. Neugebauer, Generation and performance of special quasirandom structures for studying the elastic properties of random alloys: application to Al-Ti. Phys. Rev. B 81, 094203 (2010)

    Google Scholar 

  20. M.C. Gao, Y. Suzuki, H. Schweiger, O.N. Dogan, J. Hawk, M. Widom, Phase stability and elastic properties of Cr-V alloys. J. Phys. Condens. Matter 25, 15 (2013)

    Google Scholar 

  21. D. Shin, A. van de Walle, Y. Wang, Z.-K. Liu, First-principles study of ternary fcc solution phases from special quasirandom structures. Phys. Rev. B 76, 10 (2007)

    Google Scholar 

  22. D.W. Shin, Z.-K. Liu, Enthalpy of mixing for ternary fcc solid solutions from special quasirandorn structures. Calphad 32, 74–81 (2008)

    CAS  Google Scholar 

  23. C. Jiang, First-principles study of ternary bcc alloys using special quasi-random structures. Acta Mater. 57, 4716–4726 (2009)

    CAS  Google Scholar 

  24. Z. Wen, Y. Zhao, J. Tian, S. Wang, Q. Guo, H. Hou, Computation of stability, elasticity and thermodynamics in equiatomic AlCrFeNi medium-entropy alloys. J. Mater. Sci. 54, 2566–2576 (2019)

    CAS  Google Scholar 

  25. T. Zuo, M.C. Gao, L. Ouyang, X. Yang, Y. Cheng, R. Feng, S. Chen, P.K. Liaw, J.A. Hawk, Y. Zhang, Tailoring magnetic behavior of CoFeMnNiX (X = Al, Cr, Ga, and Sn) high entropy alloys by metal doping. Acta Mater. 130, 10–18 (2017)

    CAS  Google Scholar 

  26. F.Y. Tian, Y. Wang, L. Vitos, Impact of aluminum doping on the thermo-physical properties of refractory medium-entropy alloys. J. Appl. Phys. 121, 9 (2017)

    Google Scholar 

  27. Y. Wang, M. Yan, Q. Zhu, W.Y. Wang, Y. Wu, X. Hui, R. Otis, S.-L. Shang, Z.-K. Liu, L.-Q. Chen, Computation of entropies and phase equilibria in refractory V-Nb-Mo-Ta-W high-entropy alloys. Acta Mater. 143, 88–101 (2018)

    CAS  Google Scholar 

  28. Y.F. Ye, Y.H. Zhang, Q.F. He, Y. Zhuang, S. Wang, S.Q. Shi, A. Hu, J. Fan, Y. Yang, Atomic-scale distorted lattice in chemically disordered equimolar complex alloys. Acta Mater. 150, 182–194 (2018)

    CAS  Google Scholar 

  29. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996)

    CAS  Google Scholar 

  30. G. Kresse, J. Furthmüller, Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996)

    CAS  Google Scholar 

  31. P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994)

    Google Scholar 

  32. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    CAS  Google Scholar 

  33. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)

    Google Scholar 

  34. M. Methfessel, A.T. Paxton, High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616–3621 (1989)

    CAS  Google Scholar 

  35. Walle A. Van De, M. Asta, G. Ceder, The alloy theoretic automated toolkit: a user guide. Calphad 26, 539–553 (2002)

    Google Scholar 

  36. F. Birch, Finite elastic strain of cubic crystals. Phys. Rev. 71, 809 (1947)

    CAS  Google Scholar 

  37. Z. Wen, Y. Zhao, H. Hou, B. Wang, P. Han, The mechanical and thermodynamic properties of Heusler compounds Ni2XAl (X = Sc, Ti, V) under pressure and temperature: a first-principles study. Mater. Des. 114, 398–403 (2017)

    CAS  Google Scholar 

  38. Y. Zhao, L. Qi, Y. Jin, K. Wang, J. Tian, P. Han, The structural, elastic, electronic properties and Debye temperature of D022-Ni3V under pressure from first-principles. J. Alloys Compd. 647, 1104–1110 (2015)

    CAS  Google Scholar 

  39. J. Liu, X. Lu, Lattice constant and bulk modulus of binary fcc disordered alloys studied by the first-principles calculations. Shanghai Met. 39, 75–78 (2017)

    CAS  Google Scholar 

  40. C. Wang, J. Xu, X. Hu, D. Chen, H. Sun, B. Yu, Elastic and thermodynamic properties of NiAl and Ni3Al from first-principles calculations. Int. J. Mod. Phys. B 25, 3623–3631 (2011)

    CAS  Google Scholar 

  41. Q. Wu, S. Li, Alloying element additions to Ni3Al: site preferences and effects on elastic properties from first-principles calculations. Comput. Mater. Sci. 53, 436–443 (2012)

    CAS  Google Scholar 

  42. C. Colinet, A. Bessoud, A. Pasturel, A tight-binding analysis of cohesive properties in the Ni-Al system. J. Phys. Condens. Matter 1, 5837 (1989)

    CAS  Google Scholar 

  43. P.A. Schultz, J.W. Davenport, Bonding and brittleness in B2 structure 3d transition metal aluminides: ionic, directional, or does it make a difference. Scr. Metall. Mater. 27, 629–634 (1992)

    CAS  Google Scholar 

  44. F.Z. Chrifi-Alaoui, M. Nassik, K. Mahdouk, J.C. Gachon, Enthalpies of formation of the Al-Ni intermetallic compounds. J. Alloys Compd. 364, 121–126 (2004)

    CAS  Google Scholar 

  45. K. Rzyman, Z. Moser, R. Watson, M. Weinert, Enthalpies of formation of Ni3Al: experiment versus theory. J. Phase Equilib. 17, 173–178 (1996)

    CAS  Google Scholar 

  46. P. Nash, O. Kleppa, Composition dependence of the enthalpies of formation of NiAl. J. Alloys Compd. 321, 228–231 (2001)

    CAS  Google Scholar 

  47. M.C. Gao, J.-W. Yeh, P.K. Liaw, Y. Zhang, High-Entropy Alloys: Fundamentals and Applications (Springer, Berlin, 2016)

    Google Scholar 

  48. R. Hill, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A 65, 349 (1952)

    Google Scholar 

  49. J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, Oxford, 1985)

    Google Scholar 

  50. C. Kittel, Introduction to Solid State Physics, 5th edn. (Wiley, Chichester, 1976)

    Google Scholar 

  51. Z. Wen, H. Hou, Y. Zhao, X. Yang, L. Fu, N. Wang, P. Han, First-principle study of interfacial properties of Ni-Ni3Si composite. Comput. Mater. Sci. 79, 424–428 (2013)

    CAS  Google Scholar 

  52. C. Wang, C.-Y. Wang, Ni/Ni3Al interface: a density functional theory study. Appl. Surf. Sci. 255, 3669–3675 (2009)

    CAS  Google Scholar 

  53. S.L. Shang, A. Saengdeejing, Z.G. Mei, D.E. Kim, H. Zhang, S. Ganeshan, Y. Wang, Z.-K. Liu, First-principles calculations of pure elements: equations of state and elastic stiffness constants. Comput. Mater. Sci. 48, 813–826 (2010)

    CAS  Google Scholar 

  54. H. Yasuda, T. Takasugi, M. Koiwa, Elasticity of Ni-based L12-type intermetallic compounds. Acta Metall. Mater. 40, 381–387 (1992)

    CAS  Google Scholar 

  55. H. Hou, Z. Wen, Y. Zhao, L. Fu, N. Wang, P. Han, First-principles investigations on structural, elastic, thermodynamic and electronic properties of Ni3X (X = Al, Ga and Ge) under pressure. Intermetallics 44, 110–115 (2014)

    CAS  Google Scholar 

  56. C.-H. Zhang, S. Huang, J. Shen, N.-X. Chen, Chen’s lattice inversion embedded-atom method for Ni-Al alloy. Chin. Phys. B 21, 113401 (2012)

    Google Scholar 

  57. J.W. Otto, J.K. Vassiliou, G. Frommeyer, Equation of state of polycrystalline Ni50Al50. J. Mater. Res. 12, 3106–3108 (1997)

    CAS  Google Scholar 

  58. J. Li, Y. Qi, M. Zhang, Y. Zhou, X. Li, First-principle study of adhesion, wetting and bonding on Al/Al3V(001) interface. Surf. Sci. 624, 1–7 (2014)

    CAS  Google Scholar 

  59. S.F. Pugh, XCII Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond. Edinb. Dublin Philos. Mag. J. Sci. 45, 823–843 (1954)

    CAS  Google Scholar 

  60. A. Otero-de-la-Roza, D. Abbasi-Pérez, V. Luaña, Gibbs2: a new version of the quasiharmonic model code II Models for solid-state thermodynamics, features and implementation. Comput. Phys. Commun. 182, 2232–2248 (2011)

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 51774254, 51774253, 51701187, U1610123, 51674226, 51574206, 51574207) and the Science and Foundation of Guilin University of Technology (No. GUTQDJJ2019116).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiqin Wen or Yuhong Zhao.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 259 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Z., Zhao, Y., Li, J. et al. Phase Stability and Thermo-Physical Properties of Nickel-Aluminum Binary Chemically Disordered Systems via First-Principles Study. Met. Mater. Int. 27, 1469–1477 (2021). https://doi.org/10.1007/s12540-019-00568-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00568-w

Keywords

Navigation