Skip to main content
Log in

High Temperature Mechanical Properties and Microstructures of Thermally Stabilized Fe-Based Alloys Synthesized by Mechanical Alloying Followed by Hot Extrusion

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The key requirement to consolidate high-energy mechanically alloyed nanocrystalline powders is to achieve densification and particle bonding without impairment in the mechanical properties. Recent demonstrations of consolidation methods involving high shear, pressure and temperature have shown promising results for bonding high strength particulate materials produced by mechanical alloying. In this study, we report the ability of multi-pass high temperature equal channel angular extrusion to produce bulk ferritic alloys from nanocrystalline Fe–Ni–Zr powders. Subsequent microstructural characterizations indicate limited grain growth as the average grain sizes remain smaller than 100 nm after processing temperatures of 600 °C and 700 °C, above which grains reach micron sizes. The compression test results reveal that the alloys exhibit high mechanical strength at room and moderately high temperatures compared to the pure Fe and Fe–Ni alloys without Zr addition.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E.O. Hall, Nature 173, 948–949 (1954)

    Google Scholar 

  2. R. Valiev, Nat. Mater. 3, 511–516 (2004)

    CAS  Google Scholar 

  3. H. Gleiter, Adv. Mater. 4, 474–481 (1992)

    CAS  Google Scholar 

  4. C.C. Koch, Scr. Mater. 49, 657–662 (2003)

    CAS  Google Scholar 

  5. C. Suryanarayana, Adv. Eng. Mater. 7, 983–992 (2005)

    CAS  Google Scholar 

  6. H. Gleiter, Acta Mater. 48, 1–29 (2000)

    CAS  Google Scholar 

  7. H. Kotan, M. Saber, C.C. Koch, R.O. Scattergood, Mater. Sci. Eng. A 552, 310–315 (2012)

    CAS  Google Scholar 

  8. C.C. Koch, J. Mater. Sci. 42, 1403–1414 (2007)

    CAS  Google Scholar 

  9. P.C. Millett, R.P. Selvam, A. Saxena, Acta Mater. 55, 2329–2336 (2007)

    CAS  Google Scholar 

  10. J.R. Trelewicz, C.A. Schuh, Phys. Rev. B 79, 094112 (2009)

    Google Scholar 

  11. W.T. Xing, A.R. Kalidindi, D. Amram, C.A. Schuh, Acta Mater. 161, 285–294 (2018)

    CAS  Google Scholar 

  12. T. Chookajorn, H.A. Murdoch, C.A. Schuh, Science 337, 951–954 (2012)

    CAS  Google Scholar 

  13. H. Kotan, Mater. Sci. Eng. A 647, 136–143 (2015)

    CAS  Google Scholar 

  14. H. Kotan, K.A. Darling, R.O. Scattergood, C.C. Koch, J. Alloy. Compd. 615, 1013–1018 (2014)

    CAS  Google Scholar 

  15. H. Kotan, K.A. Darling, Mater. Sci. Eng. A 686, 168–175 (2017)

    CAS  Google Scholar 

  16. Z.B. Jiao, C.A. Schuh, Acta Mater. 161, 194–206 (2018)

    CAS  Google Scholar 

  17. B.G. Clark, K. Hattar, M.T. Marshall, T. Chookajorn, B.L. Boyce, C.A. Schuh, JOM 68, 1625–1633 (2016)

    CAS  Google Scholar 

  18. B. Schuh, F. Mendez-Martin, B. Volker, E.P. George, H. Clemens, R. Pippan et al., Acta Mater. 96, 258–268 (2015)

    CAS  Google Scholar 

  19. M. Saber, H. Kotan, C.C. Koch, R.O. Scattergood, Mater. Sci. Eng. A 556, 664–670 (2012)

    CAS  Google Scholar 

  20. H. Kotan, K.A. Darling, M. Saber, C.C. Koch, R.O. Scattergood, J. Alloy. Compd. 551, 621–629 (2013)

    CAS  Google Scholar 

  21. K.A. Darling, R.N. Chan, P.Z. Wong, J.E. Semones, R.O. Scattergood, C.C. Koch, Scr. Mater. 59, 530–533 (2008)

    CAS  Google Scholar 

  22. H. Kotan, K.A. Darling, M. Saber, R.O. Scattergood, C.C. Koch, J. Mater. Sci. 48, 8402–8411 (2013)

    CAS  Google Scholar 

  23. N. Anento, A. Serra, Y. Osetsky, Acta Mater. 132, 367–373 (2017)

    CAS  Google Scholar 

  24. K.A. Darling, M. Kapoor, H. Kotan, B.C. Hornbuckle, S.D. Walck, G.B. Thompson et al., J. Nucl. Mater. 467, 205–213 (2015)

    CAS  Google Scholar 

  25. H. Kotan, K.A. Darling, J. Mater. Eng. Perform. 24, 3271–3276 (2015)

    CAS  Google Scholar 

  26. D.J. Barton, C. Kale, B.C. Hornbuckle, K.A. Darling, K.N. Solanki, G.B. Thompson, Mater. Sci. Eng. A 725, 503–509 (2018)

    CAS  Google Scholar 

  27. Y.J. Hu, J. Li, K.A. Darling, W.Y. Wang, B.K. VanLeeuwen, X.L. Liu et al., Sci. Rep. 5, 11772 (2015)

    Google Scholar 

  28. H. Kotan, K.A. Darling, M. Saber, R.O. Scattergood, C.C. Koch, J. Mater. Sci. 48, 2251–2257 (2013)

    CAS  Google Scholar 

  29. C.C. Koch, R.O. Scattergood, K.M. Youssef, E.H. Chan, Y.T.T. Zhu, J. Mater. Sci. 45, 4725–4732 (2010)

    CAS  Google Scholar 

  30. R.Z. Valiev, T.G. Langdon, Prog. Mater. Sci. 51, 881–981 (2006)

    CAS  Google Scholar 

  31. I. Karaman, M. Haouaoui, H.J. Maier, J. Mater. Sci. 42, 1561–1576 (2007)

    CAS  Google Scholar 

  32. Z.H.M. Furukawa, M. Nemoto, T.G. Langdon, J. Mater. Sci. 36, 2835 (2001)

    CAS  Google Scholar 

  33. V.M. Segal, Mater. Sci. Eng. A A197, 157–164 (1995)

    CAS  Google Scholar 

  34. M.W. Phaneuf, Micron 30, 277–288 (1999)

    Google Scholar 

  35. Y.Z. Chen, K. Wang, G.B. Shan, A.V. Ceguerra, L.K. Huang, H. Dong et al., Acta Mater. 158, 340–353 (2018)

    CAS  Google Scholar 

  36. J. Humphreys, G.S. Rohrer, A. in Rollett, Recrystallization and Related Annealing Phenomena, 3rd edn, pp. 1–704 (2017)

  37. A. Baldan, J. Mater. Sci. 37, 2171–2202 (2002)

    CAS  Google Scholar 

  38. S.G. Chowdhury, C. Xu, T.G. Langdon, Mater. Sci. Eng. A 473, 219–225 (2008)

    Google Scholar 

  39. S. Suwas, S. Biswas, S. Singh, K. Chattopadhyay, in Nanomaterials by Severe Plastic Deformation IV, Pts 1 and 2, vol. 584–586, pp. 585–590 (2008)

  40. G.E. Dieter, Mechanical Metallurgy (McGraw-Hill, New York, 1961)

    Google Scholar 

  41. J.I. Langford, A.J.C. Wilson, J. Appl. Crystallogr. 11, 102–113 (1978)

    CAS  Google Scholar 

  42. T.R. Malow, C.C. Koch, Metall. Mater. Trans. A 29, 2285–2295 (1998)

    Google Scholar 

  43. T.D. Shen, R.B. Schwarz, S. Feng, J.G. Swadener, J.Y. Huang, M. Tang, H. Zhang, S.C. Vogel, Y.S. Zhao, Acta Mater. 55, 5007–5013 (2007)

    CAS  Google Scholar 

  44. S. Xu, Z.J. Zhou, F. Long, H.D. Jia, N. Guo, Z.W. Yao et al., Mater. Sci. Eng. A 739, 45–52 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

H. Kotan gratefully acknowledges support from Necmettin Erbakan University through the BAP under Grant Number of 171219006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Kotan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotan, H., Darling, K.A. & Luckenbaugh, T. High Temperature Mechanical Properties and Microstructures of Thermally Stabilized Fe-Based Alloys Synthesized by Mechanical Alloying Followed by Hot Extrusion. Met. Mater. Int. 27, 1790–1797 (2021). https://doi.org/10.1007/s12540-019-00567-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00567-x

Keywords

Navigation