Skip to main content
Log in

Investigation on Microstructural Delamination and Compositional Segregation in Flange Steel with a High Stretch Ratio

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In order to reveal the formation mechanism of microstructural delamination in flange steel during punching, the microstructural characteristics of flange steels with 0.064, 0.085, and 0.101 wt% carbon contents were analyzed by an optical microscope, optical emission spectrometer, metal in situ analyzer, and electron probe microanalyzer. It was found that microstructural delamination occurred due to C and Mn segregation, especially the former. The intensive segregation degree of C was dependent on its relatively smaller partition coefficient. Moreover, the segregation degree gradually decreased with the decreasing carbon content. And the increased segregations of elements except carbon were related to the coupling effect between different alloying elements. Furthermore, C and Mn were prone to segregate at the 1/4th position along the transverse direction of the casting slab; hence, almost no segregation was noticed at the edge of the casting slab. The homogenization treatment had a substantial effect on the elimination of C segregation; however, Mn segregation was relatively hard to be removed.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R.J. Zhang, L.H. Lang, R. Zafar et al., Trans. Nonferrous Met. Soc. China 9, 2442 (2016)

    Article  Google Scholar 

  2. S.S.M. Tavares, J.M. Pardal, B.B. Almeida, Eng. Fail. Anal. 84, 1 (2018)

    Article  CAS  Google Scholar 

  3. J.Q. Qian, Y. Yue, J. Iron. Steel Res. Int. 12, 1124 (2014)

    Article  Google Scholar 

  4. H.M. Shalaby, Eng. Fail. Anal. 80, 290 (2017)

    Article  CAS  Google Scholar 

  5. A.M. Yousefi, J.B.P. Lim, G.C. Clifton, Constr. Build. Mater. 191, 713 (2018)

    Article  Google Scholar 

  6. X.Y. Yang, L.H. Lang, K.N. Liu et al., Trans. Nonferrous Met. Soc. China 25, 3389 (2015)

    Article  CAS  Google Scholar 

  7. R.A. Bartlett, S.R. Frost, P. Bowen, Int. J. Press. Vessel Pip. 3, 263 (1991)

    Article  Google Scholar 

  8. J.L. Otegui, P.G. Fazzini, A. Márquez, Eng. Fail. Anal. 6, 1825 (2009)

    Article  Google Scholar 

  9. S. Rahman, Int. J. Fatigue 113, 69 (2018)

    Article  Google Scholar 

  10. P. Yasniy, S. Glado, V. Iasnii, Procedia Struct. Integr. 2, 3280 (2016)

    Article  Google Scholar 

  11. Q.Q. Yu, Y.F. Wu, Constr. Build. Mater. 155, 1188 (2017)

    Article  CAS  Google Scholar 

  12. G. Avramovic-Cingara, Y. Ososkov, M.K. Jain et al., Mater. Sci. Eng. A 7, 516 (2009)

    Google Scholar 

  13. H. Ghadbeigi, C. Pinna, S. Celotto et al., Mater. Sci. Eng. A 527, 5026 (2010)

    Article  Google Scholar 

  14. C. Zhao, H.T. Jiang, D. Tang et al., Mat. Heat Treat. 20, 17 (2008). (in Chinese)

    CAS  Google Scholar 

  15. M.S. Mustapa, Y. Mutoh, Mater. Sci. Eng. A 527, 2592 (2010)

    Article  Google Scholar 

  16. L. Ma, J.Y. Liu, C. Li et al., Mater. Charact. 153, 294 (2019)

    Article  CAS  Google Scholar 

  17. A. Karani, S. Koley, M. Shome, Eng. Fail. Anal. 96, 289 (2019)

    Article  CAS  Google Scholar 

  18. X.L. Gan, Q. Yuan, G. Zhao et al., Steel Res. Int. (2019). https://doi.org/10.1002/srin.201900040

    Article  Google Scholar 

  19. Q. Yuan, G. Xu, M. Liu et al., Steel Res. Int. (2018). https://doi.org/10.1002/srin.201800318

    Article  Google Scholar 

  20. R. Ma, Z.B. Dong, Y.H. Wei et al., Cryst. Res. Technol. 44, 1197 (2009)

    Article  CAS  Google Scholar 

  21. Z.W. Huang, Scr. Mater. 52, 1021 (2005)

    Article  CAS  Google Scholar 

  22. D. Dye, L. Thuinet, M. Ganesan, Metall. Mater. Trans. B 38, 557 (2007)

    Article  Google Scholar 

  23. Z. Jing, Y. Li, Y. Wang et al., Mater. Rep. 1, 309 (2019)

    Google Scholar 

  24. J.S. Zuback, P. Moradifar, Z. Khayat et al., J. Alloys Compd. 798, 446 (2019)

    Article  CAS  Google Scholar 

  25. K.K. Cai, Quality Control of Continuous Casting Billet (Metallurgical Industry Press, Beijing, 2010)

    Google Scholar 

  26. Y. Liu, X.H. Wang, K.J. Zhang et al., Int. J. Miner. Metall. Mater. 29, 896 (2007)

    CAS  Google Scholar 

  27. Z.D. Li, G. Miyamoto, Z.G. Yang et al., Acta Metall. Sin. 9, 1066 (2010)

    Article  Google Scholar 

  28. J.X. Chen, Common Chart Data Manual for Steel Making (Metallurgical Industry Press, Beijing, 1984)

    Google Scholar 

  29. X.G. Zeng, J. Univ. Sci. Technol. Beijing 31, 145 (2009)

    Google Scholar 

  30. M. Takashi, Z. Masafumi, Tstsu-to-Hagané 3, 17 (2013). (in Japanese)

    Google Scholar 

  31. Y.D. Jiang, Z.L. Xue, J. Wu et al., J. Univ. Sci. Technol. Wuhan 4, 258 (2010)

    Google Scholar 

  32. F.Y. Zhu, H.J. Duan, L.F. Zhang et al., Shanghai Met. 5, 39 (2014). (in Chinese)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports from the financial supports from Post-doctoral Innovative Research Post of Hubei Province, the National Natural Science Foundation of China (NSFC) (Nos. 51874216 and 51704217), the Major Projects of Technology Innovation of Hubei Province (2017AAA116) and Hebei Joint Research Fund for Iron and Steel (E2018318013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Yuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, W., Yuan, Q., Liu, S. et al. Investigation on Microstructural Delamination and Compositional Segregation in Flange Steel with a High Stretch Ratio. Met. Mater. Int. 27, 1587–1598 (2021). https://doi.org/10.1007/s12540-019-00551-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00551-5

Keywords

Navigation