Skip to main content
Log in

Microstructure Evolution of AA1070 Aluminum Alloy Processed by Micro/Meso-Scale Equal Channel Angular Pressing

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The Micro/meso-forming of commercially pure aluminum, AA1070, processed at room temperature by equal channel angular pressing (ECAP) with a die channel angle of 90° through 4 deformation passes has been conducted. Microstructure features, such as grain size, misorientation angle distributions and the developed texture during the four deformation passes of micro/meso-ECAP have been investigated by Electron backscattering diffraction (EBSD) technique. Then, hardness measurements over the cross-section of the processed samples were correlated with the EBSD analysis. EBSD scans revealed that extended shear bands are formed and represent the microstructural feature induced during micro/meso-forming. Whereas, a non-uniform grain structure consisting of intensive low-angle grain boundaries was obtained in the first pass, a uniform ultrafine-grained structure of high-angle grain boundaries (in the range of 1–2 μm) was achieved at the fourth pass. Consequently, a significant improvement in the hardness value to 65.3%, with respect to the starting material, was achieved due to the enhancement of the fine grain structure. The texture analysis exhibited that the high plastic shear strain associated with micro/meso-scale ECAP was capable to develop a weak texture in the flow plane compared to the starting texture.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. T. Aida, K. Matsuki, Z. Horita, T.G. Langdon, Scr. Mater. 44, 575–579 (2001)

    CAS  Google Scholar 

  2. Z. Yao, G.-Y. Kim, L. Faidley, Q. Zou, D. Mei, Z. Chen, J. Mater. Process. Technol. 212, 640–646 (2012)

    CAS  Google Scholar 

  3. U. Engel, R. Eckstein, J. Mater. Process. Technol. 125, 35–44 (2002)

    Google Scholar 

  4. Z. Yao, G.-Y. Kim, L. Faidley, Q. Zou, D. Mei, Z. Chen, J. Manuf. Sci. Eng. 133, 061009 (2011)

    Google Scholar 

  5. Z. Xu, L. Peng, P. Yi, X. Lai, Int. J. Mech. Sci. 150, 265–276 (2019)

    Google Scholar 

  6. J. Han, W. Zheng, G. Wang, M. Yu, Int. J. Adv. Manuf. Technol. 95, 1127–1133 (2018)

    Google Scholar 

  7. L. Peng, P. Hu, X. Lai, D. Mei, J. Ni, Mater. Des. 30, 783–790 (2009)

    CAS  Google Scholar 

  8. Z. Xu, L. Peng, E. Bao, J. Mater. Process. Technol. 252, 407–420 (2018)

    Google Scholar 

  9. T. Furushima, H. Tsunezaki, K.-I. Manabe, S. Alexsandrov, Int. J. Mach. Tools Manuf. 76, 34–48 (2014)

    Google Scholar 

  10. W. Chan, M. Fu, Int. J. Adv. Manuf. Technol. 62, 989–1000 (2012)

    Google Scholar 

  11. A. Rosochowski, W. Presz, L. Olejnik, M. Richert, Int. J. Adv. Manuf. Technol. 33, 137–146 (2007)

    Google Scholar 

  12. W. Chan, M. Fu, J. Lu, Mater. Des. 32, 198–206 (2011)

    CAS  Google Scholar 

  13. C. Keller, E. Hug, D. Chateigner, Mater. Sci. Eng. A 500, 207–215 (2009)

    Google Scholar 

  14. C. Keller, E. Hug, Mater. Lett. 62, 1718–1720 (2008)

    CAS  Google Scholar 

  15. N. Krishnan, J. Cao, K. Dohda, J. Manuf. Sci. Eng. 129, 669–676 (2007)

    Google Scholar 

  16. M. Yeh, H. Lin, H. Lin, C. Chang, J. Mater. Process. Technol. 180, 17–22 (2006)

    CAS  Google Scholar 

  17. W. Kim, Y. Sa, Scr. Mater. 54, 1391–1395 (2006)

    CAS  Google Scholar 

  18. J. Xu, L. Shi, C. Wang, D. Shan, B. Guo, J. Mater. Process. Technol. 225, 375–384 (2015)

    CAS  Google Scholar 

  19. T.G. Langdon, Acta Mater. 61, 7035–7059 (2013)

    CAS  Google Scholar 

  20. V. Segal, V. Reznikov, A.E. Drobyshevskiy, V. Kopylov, Russ. Metall. 1, 115–123 (1981)

    Google Scholar 

  21. M. Kawasaki, Z. Horita, T.G. Langdon, Mater. Sci. Eng. A 524, 143–150 (2009)

    Google Scholar 

  22. A. Veveçka, M. Cabibbo, T.G. Langdon, Mater. Charact. 84, 126–133 (2013)

    Google Scholar 

  23. S. Wronski, J. Tarasiuk, B. Bacroix, K. Wierzbanowski, H. Paul, Mater. Charact. 78, 60–68 (2013)

    CAS  Google Scholar 

  24. Z. Horita, T. Fujinami, T.G. Langdon, Mater. Sci. Eng. A 318, 34–41 (2001)

    Google Scholar 

  25. P.-L. Sun, P.-W. Kao, C.-P. Chang, Metall. Mater. Trans. A 35, 1359–1368 (2004)

    Google Scholar 

  26. S. Wu, Z. Wang, C. Jiang, G. Li, I. Alexandrov, R. Valiev, Mater. Sci. Eng. A 387, 560–564 (2004)

    Google Scholar 

  27. P. Prangnell, J.R. Bowen, P. Apps, Mater. Sci. Eng. A 375, 178–185 (2004)

    Google Scholar 

  28. D. Hughes, N. Hansen, Acta Mater. 45, 3871–3886 (1997)

    CAS  Google Scholar 

  29. P. Sun, P. Kao, C. Chang, Scr. Mater. 51, 565–570 (2004)

    CAS  Google Scholar 

  30. D. Fouad, W. El-Garaihy, M. Ahmed, M.E.-S. Seleman, H. Salem, Mater. Sci. Eng. A 737, 166–175 (2018)

    CAS  Google Scholar 

  31. T. Koizumi, M. Kuroda, Mater. Sci. Eng. A 710, 300–308 (2018)

    CAS  Google Scholar 

  32. Y. Lin, D.-G. He, M.-S. Chen, X.-M. Chen, C.-Y. Zhao, X. Ma, Z.-L. Long, Mater. Des. 97, 13–24 (2016)

    CAS  Google Scholar 

  33. Y. Lin, S.-C. Luo, L.-X. Yin, J. Huang, J. Alloy. Compd. 739, 590–599 (2018)

    CAS  Google Scholar 

  34. G. Williamson, W. Hall, Acta Metall. 1, 22–31 (1953)

    CAS  Google Scholar 

  35. R. Misra, B.R. Kumar, M. Somani, P. Karjalainen, Scr. Mater. 59, 79–82 (2008)

    CAS  Google Scholar 

  36. I.J. Beyerlein, L.S. Tóth, Prog. Mater Sci. 54, 427–510 (2009)

    CAS  Google Scholar 

  37. B. Tolaminejad, K. Dehghani, Mater. Des. 34, 285–292 (2012)

    CAS  Google Scholar 

  38. E.A. El-Danaf, Mater. Sci. Eng. A 492, 141–152 (2008)

    Google Scholar 

  39. S.G. Chowdhury, A. Mondal, J. Gubicza, G. Krállics, Á. Fodor, Mater. Sci. Eng. A 490, 335–342 (2008)

    Google Scholar 

  40. M. Shaeri, M. Shaeri, M. Ebrahimi, M. Salehi, S. Seyyedein, Prog. Nat. Sci. Mater. Int. 26, 182–191 (2016)

    CAS  Google Scholar 

  41. N. Hansen, X. Huang, G. Winther, Metall. Mater. Trans. A 42, 613–625 (2011)

    CAS  Google Scholar 

  42. G. Winther, X. Huang, N. Hansen, Acta Mater. 48, 2187–2198 (2000)

    CAS  Google Scholar 

  43. Q. Liu, N. Hansen, C. Maurice, J. Driver, Metall. Mater. Trans. A 29, 2333–2344 (1998)

    Google Scholar 

  44. Q. Ma, W. Mao, B. Li, P. Wang, M. Horstemeyer, Light Metals 2013 (Springer, Berlin, 2016), pp. 351–356

    Google Scholar 

  45. A. Mishra, B. Kad, F. Gregori, M. Meyers, Acta Mater. 55, 13–28 (2007)

    CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (W.A) is pleased to acknowledge the financial support from the Missions Sector-Higher Education Ministry, Egypt, and the Japan International Cooperation Agency (JICA) through this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walaa Abdel-Aziem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Aziem, W., Hamada, A., Makino, T. et al. Microstructure Evolution of AA1070 Aluminum Alloy Processed by Micro/Meso-Scale Equal Channel Angular Pressing. Met. Mater. Int. 27, 1756–1768 (2021). https://doi.org/10.1007/s12540-019-00544-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00544-4

Keywords

Navigation