Recent Advances in Active Metal Brazing of Ceramics and Process

Abstract

Ceramic to metal joining has its potential applications in microelectronics packaging, metal–ceramic seals, vacuum tubes, sapphire metal windows, etc. But there are many limitations in joining this duo of materials that range from their structures, nature of bonding, physical properties to a complex phenomenon like wetting, spreading and adhesion. The current review discusses these critical issues from the aspects of thermodynamics, the role, and type of active elements, Ag–Cu–Ti brazing filler system and the reliability factors like residual stress, coefficient of thermal expansion, material reliability, pores and unbonded regions on the surface which affect the mechanical reliability of the joint.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    R.W. Davidge, Contemp. Phys. 10, 105 (1969)

    CAS  Google Scholar 

  2. 2.

    K.J. Kurzydłowski, Acta Phys. Pol., A 96, 69 (1999)

    Google Scholar 

  3. 3.

    W. Fu, X.G. Song, S.P. Hu, J.H. Chai, J.C. Feng, G.D. Wang, Mater. Des. 87, 579 (2015)

    CAS  Google Scholar 

  4. 4.

    R.W. Messler Jr., Joining and Materials and Structures, 1st edn. (Butterworth- Heinemann, New York, 2004)

    Google Scholar 

  5. 5.

    A.M. Hadian, Joining of Silicon Nitride-to-Silicon Nitride and to Molybdenum for High-Temperature Applications, Ph.D. thesis (McGill University, Montreal, Canada, 1993)

  6. 6.

    S.H. Kee, Z. Xu, J.P. Jung, W. Kim, J. Microelectron. Packag. Soc. 18, 1 (2011)

    Google Scholar 

  7. 7.

    A. Sharma, S.H. Lee, H.O. Ban, Y.S. Shin, J.P. Jung, JWJ 34, 30 (2016)

    Google Scholar 

  8. 8.

    J. Shin, A. Sharma, D.H. Jung, J.P. Jung, Kor. J. Met. Mater. 56, 366 (2018)

    CAS  Google Scholar 

  9. 9.

    F. Moret, N. Eustathopoulos, Le Journal de Physique IV03(C 7), 1043 (1993)

    Google Scholar 

  10. 10.

    A. Sharma, S.H. Kee, F. Jung, Y. Heo, J.P. Jung, J. Mater. Eng. Perform. 25(5), 1722 (2016)

    CAS  Google Scholar 

  11. 11.

    Q. David, Annu. Rev. Mater. Res. 38, 71 (2008)

    Google Scholar 

  12. 12.

    D. Bonn, J. Eggers, J. Indekeu, J. Meunier, E. Rolley, Rev. Mod. Phys. 81, 739 (2009)

    CAS  Google Scholar 

  13. 13.

    E. Thormann, Curr. Opin. Colloid Interface Sci. 27, 18 (2017)

    CAS  Google Scholar 

  14. 14.

    R.N. Wenzel, Ind. Eng. Chem. 28, 988 (1936)

    CAS  Google Scholar 

  15. 15.

    C.G.L. Furmidge, J. Colloid Sci. 17, 309 (1962)

    CAS  Google Scholar 

  16. 16.

    Y. Si, Z. Guo, Nanoscale 7, 5922 (2015)

    CAS  Google Scholar 

  17. 17.

    A. Adamson, A. Gast, Physical Chemistry of Surfaces, 6th edn. (Wiley-Interscience, New York, 1997)

    Google Scholar 

  18. 18.

    P.G.D. Gennes, F.B. Wyart, D. Quéré, Capillarity and Wetting Phenomena, 1st edn. (Springer-Verlag, New York, 2013)

    Google Scholar 

  19. 19.

    P.R. Chidambaram, G.R. Edwards, D.L. Olson, Metall. Mater. Trans. A 25, 2083 (1994)

    Google Scholar 

  20. 20.

    P.R. Chidambaram, G.R. Edwards, D.L. Olson, Metall. Trans. B 23, 215 (1992)

    Google Scholar 

  21. 21.

    A. Sharma, M.H. Roh, D.H. Jung, J.P. Jung, Metall. Mater. Trans. A 47A, 510 (2016)

    Google Scholar 

  22. 22.

    A. Sharma, D.U. Lim, J.P. Jung, Mater. Sci. Technol. 32(8), 773 (2016)

    CAS  Google Scholar 

  23. 23.

    A. Sharma, M.H. Roh, J.P. Jung, J. Mater. Eng. Perform. 25(8), 3538 (2016)

    CAS  Google Scholar 

  24. 24.

    A. Sharma, X. Di, J.P. Jung, Mater. Res. Exp. 6(5), 056526 (2019)

    CAS  Google Scholar 

  25. 25.

    A. Sharma, B.G. Baek, J.P. Jung, Mater. Des. 87, 370 (2015)

    CAS  Google Scholar 

  26. 26.

    A. Sharma, H. Yu, I.S. Cho, H. Seo, B. Ahn, Electron. Mater. Lett. 15, 27 (2019)

    CAS  Google Scholar 

  27. 27.

    A. Sharma, A.K. Srivastava, K. Lee, B. Ahn, Met. Mater. Int. 25, 1027 (2019)

    CAS  Google Scholar 

  28. 28.

    A. Sharma, A.K. Srivastava, B. Ahn, Mater. Res. Exp. 6, 056520 (2019)

    CAS  Google Scholar 

  29. 29.

    A. Sharma, H.R. Sohn, J.P. Jung, Metall. Mater. Trans. A 47(1), 494 (2016)

    CAS  Google Scholar 

  30. 30.

    N. Eustathopoulos, M.G. Nicholas, B. Drevet, Wettability at High Temperatures, 1st edn. (Pergamon, Oxford, 1999)

    Google Scholar 

  31. 31.

    R. Arroyave, Thermodynamics and Kinetics of Ceramic/Metal Interfacial Interactions (Ph.D. Thesis, MIT, USA, 2004)

  32. 32.

    J.W. Park, P.F. Mendez, T.W. Eagar, Acta Mater. 50, 883 (2002)

    CAS  Google Scholar 

  33. 33.

    J.A. Fernie, R.A.L. Drew, K.M. Knowles, Int. Mater. Rev. 54, 283 (2009)

    CAS  Google Scholar 

  34. 34.

    S.H. Kee, S.Y. Park, Y.K. Huh, J.P. Jung, W.J. Kim, J. Kor. Acad. Prosthodont. 50(3), 169 (2012)

    Google Scholar 

  35. 35.

    Y.V. Naidich, V.S. Zhuravlev, I.I. Gab, B.D. Kostyuk, V.P. Krasovskyy, A.A. Adamovskyy, NYu. Taranets, J. Eur. Ceram. Soc. 28, 717 (2008)

    CAS  Google Scholar 

  36. 36.

    O. Dezellus, R. Arroyave, S.G. Fries, Int. J. Mater. Res. 102, 286 (2011)

    CAS  Google Scholar 

  37. 37.

    R.E. Loehman, A.P. Tomsia, Acta Metall. Mater. 40, S75 (1992)

    CAS  Google Scholar 

  38. 38.

    R. Voytovych, F. Robaut, N. Eustathopoulos, Acta Mater. 54, 2205 (2006)

    CAS  Google Scholar 

  39. 39.

    N.Y. Taranets, H. Jones, Mater. Sci. Eng., A 379, 251 (2004)

    Google Scholar 

  40. 40.

    V.N. Eremenko, Y.I. Buyanov, N.M. Panchenko, Sov. Powder Metall. Met. Ceram. 9, 410 (1970)

    Google Scholar 

  41. 41.

    V.N. Eremenko, Y.I. Buyanov, N.M. Panchenko, Sov. Powder Metall. Met. Ceram. 9, 310 (1970)

    Google Scholar 

  42. 42.

    V.N. Eremenko, Y.I. Buyanov, N.M. Panchenko, Izvestiya AkademiiNauk SSSR, Metally 3, 188 (1969)

    Google Scholar 

  43. 43.

    Y. Chang, D. Goldberg, J. Neumann, J. Phys. Chem. 6, 621 (1977)

    CAS  Google Scholar 

  44. 44.

    O. Kubaschewski, J. De Keyzer, R. Schmid-Fetzer, O. Shcherban, V. Tomashik, Y. Jialin, L. Tretyachenko, Silver-Copper-Titanium, vol. 11 (Springer, Berlin, 2007), pp. 63–74

    Google Scholar 

  45. 45.

    K.T. Raić, Ceram. Int. 26, 19 (2000)

    Google Scholar 

  46. 46.

    G. Elssner, G. Petzow, ISIJ Int. 30, 1011 (1990)

    CAS  Google Scholar 

  47. 47.

    S. Somiya, Handbook of Advanced Ceramics: Materials, Applications, Processing, and Properties, 2nd edn. (Academic Press, Cambridge, 2013)

    Google Scholar 

  48. 48.

    J. Lemus-Ruiz, L. Ceja-Cárdenas, J.A. Verduzco, O. Flores, J. Mater. Sci. 43, 6296 (2008)

    CAS  Google Scholar 

  49. 49.

    K. Suganuma, ISIJ Int. 30, 1046 (1990)

    CAS  Google Scholar 

  50. 50.

    K.A. Khor, M. Wang, W. Zhou, F. Boey, T.S. Srivatsan, Processing and Fabrication of Advanced Materials VIII (World Scientific, Singapore, 2001)

    Google Scholar 

  51. 51.

    R. Anderson, Adv. Mater. Processes 135, 31 (1989)

    Google Scholar 

  52. 52.

    H. Mizuhara, E. Huebel, O.T. Oyama, Am. Ceram. Soc. Bull. 68, 1591 (1989)

    CAS  Google Scholar 

  53. 53.

    J. Olofsson, Friction and Wear Mechanisms of Ceramic Surfaces: With Applications to Micro Motors and Hip Joint Replacements (Ph.D. thesis, Uppsala University, Sweden, 2011)

  54. 54.

    B. Çelik B, Thermally Induced Distortion and Residual Stresses in Welded Joints (M.S. thesis, Cukurova University, Turkey, 2009)

  55. 55.

    Y. Zhou, Microjoining and Nanojoining, 1st edn. (Elsevier, Amsterdam, 2008)

    Google Scholar 

  56. 56.

    M.B. Uday, M.N. Ahmad Fauzi, H. Zuhailawati, A.B. Ismail, Mater. Sci. Eng., A 528, 4753 (2011)

    Google Scholar 

  57. 57.

    A. Bellosi, T. Kosmac, A.P. Tomsia, Interfacial Science in Ceramic Joining, Series: Nato Science Partnership Subseries: 3, vol. 58 (Springer, Berlin, 1998)

    Google Scholar 

  58. 58.

    A.M. Hadian, Joining of Silicon Nitride to Silicon Nitride and to Molybdenum for High Temperature Applications (Ph.D. thesis, McGill University, Montreal, Canada, 1993)

  59. 59.

    R.J. Lemus, Diffusion Bonding of Silicon Nitride to Titanium (Ph.D. thesis, McGill University, Montréal, Canada, 2000)

  60. 60.

    J.W. Park, A Framework for Designing Interlayers for Ceramic to Metal Joints (Ph.D. thesis, Massachusetts Institute of Technology, USA, 2000)

  61. 61.

    W. Wunderlich, Metals 4, 410 (2014)

    Google Scholar 

  62. 62.

    R.M.D. Nascimento, A.E. Martinelli, A.J.A. Buschinelli, Ceramica 49, 178 (2003)

    Google Scholar 

  63. 63.

    M.R. Abbas, M.B. Uday, A.M. Noor, N. Ahmad, Srithar Rajoo. Mater. Des. 109, 47 (2016)

    CAS  Google Scholar 

  64. 64.

    K. Suganuma, Reliability Factors in Ceramic/Metal Joining, National Defense Academy Yokosuka, Japan (1993)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Technology development program (S2517123) funded by the Ministry of SME’s and Startups (MSS, Korea) and also supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20172020109280).

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. P. Jung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mishra, S., Sharma, A., Jung, D.H. et al. Recent Advances in Active Metal Brazing of Ceramics and Process. Met. Mater. Int. 26, 1087–1098 (2020). https://doi.org/10.1007/s12540-019-00536-4

Download citation

Keywords

  • Ceramic
  • Metal
  • Active metal brazing
  • Wetting
  • Reliability