Skip to main content
Log in

Microstructure and Tensile Properties of Mg–5Zn Alloy Containing Ca

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The present study aimed at investigating the effect of Ca (0–3 wt%) on the microstructure and tensile properties of as-cast and as-extruded Mg–Zn alloy, in which tensile tests, X-ray diffraction, SEM, EDX and texture analysis were used to evaluate these features. Based on the results obtained, it is shown that the average grain size decreased from 305 to 84 μm by adding 3 wt% Ca to the as-cast Mg–Zn alloy. XRD and SEM results reveal that the dominant second phase in the presence of Ca is Ca2Mg6Zn3 which is formed continuously between dendrite arms spacing. It has been observed that the addition of 0.1 wt% Ca, significantly enhanced both UTS and elongation of as-cast alloy. It is found that the size of DRXed grains decreases with the increase of Ca (4 μm with 3 wt% Ca addition) after hot-extrusion. Further, it has been observed that Ultimate tensile strength (UTS) and elongation values of extruded alloys containing Ca are enhanced and the best result is obtained for Mg–5Zn–0.1Ca sample. Ultimate tensile strength (UTS) of 351 MPa and elongation percentage of 24% are obtained for Mg–5Zn–0.1Ca extruded alloy.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. H.F. Sun, C.J. Li, W.B. Fang, J. Mater. Process. Technol. 229, 633 (2016)

    CAS  Google Scholar 

  2. P.D. Caton, Mater. Des. 12, 309 (1991)

    CAS  Google Scholar 

  3. J. Luo, H. Yan, N. Zheng, R.S. Chen, Acta Metall. Sin. Engl. Lett. 29, 205 (2016)

    CAS  Google Scholar 

  4. Q. Kang, H. Jiang, Y. Zhang, Z. Xu, H. Li, Z. Xia, J. Alloys Compd. 742, 1019 (2018)

    CAS  Google Scholar 

  5. S.A. Torbati-Sarraf, S. Sabbaghianrad, T.G. Langdon, Adv. Eng. Mater. 20, 1700703 (2018). https://doi.org/10.1002/adem.201700703

    Article  CAS  Google Scholar 

  6. K. Kubota, M. Mabuchi, K. Higashi, J. Mater. Sci. 34, 2255 (1999)

    CAS  Google Scholar 

  7. Q.D. Wang, Y.J. Chen, J.B. Lin, L.J. Zhang, C.Q. Zhai, Mater. Lett. 61, 4599 (2007)

    CAS  Google Scholar 

  8. Y. Du, M. Zheng, B. Jiang, Vacuum 151, 221 (2018)

    CAS  Google Scholar 

  9. M. Yuasa, N. Miyazawa, M. Hayashi, M. Mabuchi, Y. Chino, Acta Mater. 83, 294 (2015)

    CAS  Google Scholar 

  10. C.J. Bettles, M.A. Gibson, K. Venkatesan, Scr. Mater. 51, 193 (2004)

    CAS  Google Scholar 

  11. Y.Z. Du, X.G. Qiao, M.Y. Zheng, D.B. Wang, K. Wu, I.S. Golovin, Mater. Des. 98, 285 (2016)

    CAS  Google Scholar 

  12. B. Langelier, A.M. Nasiri, S.Y. Lee, M.A. Gharghouri, S. Esmaeili, Mater. Sci. Eng. A 620, 76 (2014)

    CAS  Google Scholar 

  13. L. Geng, B.P. Zhang, A.B. Li, C.C. Dong, Mater. Lett. 63, 557 (2009)

    CAS  Google Scholar 

  14. Y. Du, M. Zheng, X. Qiao, D. Wang, W. Peng, K. Wu, B. Jiang, Mater. Sci. Eng. A 656, 67 (2016)

    CAS  Google Scholar 

  15. C.D. Yim, B.S. You, R.S. Jang, S.G. Lim, J. Mater. Sci. 41, 2347 (2006)

    CAS  Google Scholar 

  16. L. Han, H. Hu, D.O. Northwood, N. Li, Mater. Sci. Eng. A 473, 16 (2008)

    Google Scholar 

  17. S. Farahany, H.R. Bakhsheshi-Rad, M.H. Idris, M.R. Abdul Kadir, A.F. Lotfabadi, A. Ourdjini, Thermochim Acta. 527, 180 (2012)

    CAS  Google Scholar 

  18. T.V. Larionova, W.-W. Park, B.-S. You, Scr. Mater. 45, 7 (2001)

    CAS  Google Scholar 

  19. G. Levi, S. Avraham, A. Zilberov, M. Bamberger, Acta Mater. 54, 523 (2006)

    CAS  Google Scholar 

  20. J. Bohlen, J. Wendt, M. Nienaber, K.U. Kainer, L. Stutz, D. Letzig, Mater. Charact. 101, 144 (2015)

    CAS  Google Scholar 

  21. B.P. Zhang, L. Geng, L.J. Huang, X.X. Zhang, C.C. Dong, Scr. Mater. 63, 1024 (2010)

    CAS  Google Scholar 

  22. T. Wang, L. Jiang, R.K. Mishra, J.J. Jonas, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 45, 4698 (2014)

    CAS  Google Scholar 

  23. N. Stanford, Mater. Sci. Eng. A 528, 314 (2010)

    Google Scholar 

  24. M. Hradilová, F. Montheillet, A. Fraczkiewicz, C. Desrayaud, P. Lejček, Mater. Sci. Eng. A 580, 217 (2013)

    Google Scholar 

  25. T. Homma, C.L. Mendis, K. Hono, S. Kamado, Mater. Sci. Eng. A 527, 2356 (2010)

    Google Scholar 

  26. T. Al-Samman, G. Gottstein, Mater. Sci. Eng. A 490, 411 (2008)

    Google Scholar 

  27. Y.B. Zuo, X. Fu, D. Mou, Q.F. Zhu, L. Li, J.Z. Cui, Mater. Res. Innov. 19, S194 (2015)

    Google Scholar 

  28. D.W. Kim, B.C. Suh, M.S. Shim, J.H. Bae, D.H. Kim, N.J. Kim, Metall. Mater. Trans. A 44, 2950 (2013)

    CAS  Google Scholar 

  29. S.W. Xu, S. Kamado, T. Honma, Scr. Mater. 63, 293 (2010)

    CAS  Google Scholar 

  30. Z.R. Zeng, Y.M. Zhu, S.W. Xu, M.Z. Bian, C.H.J. Davies, N. Birbilis, J.F. Nie, Acta Mater. 105, 479 (2016)

    CAS  Google Scholar 

  31. H. Pan, Y. Ren, H. Fu, H. Zhao, L. Wang, X. Meng, G. Qin, J. Alloys Compd. 663, 321 (2016)

    CAS  Google Scholar 

  32. D. Guan, X. Liu, J. Gao, L. Ma, B. Wynne, W.M. Rainforth, J. Alloys Compd. 774, 556 (2019)

    CAS  Google Scholar 

  33. F. Guo, L. Jiang, M. Yang, Y. Ma, Y. Deng, D. Zhang, F. Pan, Adv. Eng. Mater. 21, 1800920 (2019). https://doi.org/10.1002/adem.201800920

    Article  CAS  Google Scholar 

  34. J.Y. Lee, Y.S. Yun, W.T. Kim, D.H. Kim, Met. Mater. Int. 20, 885 (2014)

    CAS  Google Scholar 

  35. S. Liu, L. Kang, H. Han, Z. Wang, J. Wuhan Univ. Technol. Mater. Sci. Ed. 21, 45 (2006)

    CAS  Google Scholar 

  36. M. Easton, D. St John, Metall. Mater. Trans. A 36, 1911 (2005)

    Google Scholar 

  37. Y.C. Lee, A.K. Dahle, D.H. St John, in Essential Readings in Magnesium Technology, ed. by S.N. Mathaudhu, A.A. Luo, N.R. Neelameggham, E.A. Nyberg, W.H. Sillekens (Springer, Cham, 2016), p. 247

    Google Scholar 

  38. M.E. Glicksman, Principles of Solidification: An Introduction to Modern Casting and Crystal Growth Concepts (Springer, Berlin, 2010)

    Google Scholar 

  39. P. Ghosh, M. Mezbahul-Islam, M. Medraj, CALPHAD Comput. Coupling Phase Diagr Thermochem. 36, 28 (2012)

    CAS  Google Scholar 

  40. S. Cai, T. Lei, N. Li, F. Feng, Mater. Sci. Eng. C 32, 2570 (2012)

    CAS  Google Scholar 

  41. D.K. Xu, E.H. Han, Prog. Nat. Sci. Mater. Int. 22, 364 (2012)

    Google Scholar 

  42. N. El Mahallawy, A. Ahmed Diaa, M. Akdesir, H. Palkowski, Materwiss. Werksttech. 47, 37 (2016)

    Google Scholar 

  43. Y.Z. Du, M.Y. Zheng, C. Xu, X.G. Qiao, K. Wu, X.D. Liu, G.J. Wang, X.Y. Lv, Mater. Sci. Eng. A 576, 6 (2013)

    CAS  Google Scholar 

  44. R.K. Mishra, A.K. Gupta, P. Rao Rama, A.K. Sachdev, V. Kumar, A.A. Luo, Scr. Mater. 59, 562 (2008). https://doi.org/10.1016/j.scriptamat.2008.05.019

    Article  CAS  Google Scholar 

  45. H.R. Bakhsheshi-Rad, M.R. Abdul-Kadir, M.H. Idris, S. Farahany, Corros. Sci. 64, 184 (2012)

    CAS  Google Scholar 

  46. K.P. Rao, Y.V.R.K. Prasad, C. Dharmendra, K. Suresh, N. Hort, H. Dieringa, Adv. Eng. Mater. 20, 1701102 (2018)

    Google Scholar 

  47. N.V. Ravi Kumar, J.J. Blandin, C. Desrayaud, F. Montheillet, M. Suéry, Mater. Sci. Eng. A 359, 150 (2003)

    Google Scholar 

  48. Z. Yang, Y.C. Guo, J.P. Li, F. He, F. Xia, M.X. Liang, Mater. Sci. Eng. A 485, 487 (2008)

    Google Scholar 

  49. Y. Takigawa, M. Honda, T. Uesugi, K. Higashi, Mater. Trans. 49, 1979 (2008)

    CAS  Google Scholar 

  50. B. Zhang, Y. Wang, L. Geng, C. Lu, Mater. Sci. Eng. A 539, 56 (2012)

    CAS  Google Scholar 

  51. A.K. Mukherjee, in Materials Science and Technology, ed. by R.W. Cahn, P. Haasen, E.J. Kramer (Wiley, New York, 2006). https://doi.org/10.1002/9783527603978.mst0056

    Chapter  Google Scholar 

  52. C. Gandhi, R. Raj, Acta Metall. Mater. 39, 679 (1991)

    CAS  Google Scholar 

  53. S. Mostafapoor, M. Malekan, M. Emamy, J. Therm. Anal. Calorim. 134, 1457 (2018)

    CAS  Google Scholar 

  54. S. Mostafapoor, M. Malekan, M. Emamy, J. Therm. Anal. Calorim. 127, 1941 (2017)

    CAS  Google Scholar 

  55. S. Mosleh, M. Emamy, H. Majdi, Proc. Mater. Sci. 11, 79 (2015)

    CAS  Google Scholar 

  56. S. Ghanaraja, D.J. Dileep Kumar, K.S. Ravikumar, B.M. Madhusudan, Mech. Mater. 813, 84 (2015)

    Google Scholar 

  57. N. Stanford, M.R. Barnett, Mater. Sci. Eng. A 496, 399 (2008)

    Google Scholar 

  58. N. Stanford, Mater. Sci. Eng. A 527, 2669 (2010)

    Google Scholar 

  59. A. Datta, U.V. Waghmare, U. Ramamurty, Acta Mater. 56, 2531 (2008)

    CAS  Google Scholar 

  60. R.P. De Siqueira, H.R.Z. Sandim, D. Raabe, Metall. Mater. Trans. A 44, 469 (2013)

    CAS  Google Scholar 

  61. Z.R. Zeng, M.Z. Bian, S.W. Xu, C.H.J. Davies, N. Birbilis, J.F. Nie, Scr. Mater. 108, 6 (2015)

    CAS  Google Scholar 

  62. X.H. Chen, H. Yan, X.P. Jie, Int. J. Cast Met. Res. 28, 151 (2014)

    Google Scholar 

  63. S. Candan, M. Unal, E. Koc, Y. Turen, E. Candan, J. Alloys Compd. 509, 1958 (2011)

    CAS  Google Scholar 

  64. Z. Wang, M. Gao, H. Tang, X. Zeng, Mater. Charact. 62, 943 (2011)

    CAS  Google Scholar 

  65. H.A. Patel, D.L. Chen, S.D. Bhole, K. Sadayappan, J. Alloys Compd. 496, 140 (2010)

    CAS  Google Scholar 

  66. S.T. Niknejad, L. Liu, T. Nguyen, M.Y. Lee, S. Esmaeili, N.Y. Zhou, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 44, 3747 (2013)

    CAS  Google Scholar 

  67. A. Bahrami, A. Razaghian, M. Emami, H.R. Jafari Nodooshan, G.S. Mousav, Key Eng. Mater. 471, 1171 (2011). https://doi.org/10.4028/www.scientific.net/KEM.471-472.1171

    Article  CAS  Google Scholar 

  68. J.L. Li, Y.Q. Ma, R.S. Chen, W. Ke, Mater. Sci. Forum 747, 390 (2013)

    Google Scholar 

  69. G.E. Dieter, Mechanical Metallurgy, vol. 3 (McGraw-Hill, New York, 2011)

    Google Scholar 

  70. J. Bohlen, M.R. Nürnberg, J.W. Senn, D. Letzig, S.R. Agnew, Acta Mater. 55, 2101 (2007)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors of this paper would thank Iran University of Industries and Mines for financial support and University of Tehran for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Shahri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maleki, E., Shahri, F. & Emamy, M. Microstructure and Tensile Properties of Mg–5Zn Alloy Containing Ca. Met. Mater. Int. 27, 1565–1577 (2021). https://doi.org/10.1007/s12540-019-00530-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00530-w

Keywords

Navigation