Skip to main content
Log in

Structural Mechanisms of the Cooling Rate Effect on the Deformation Behaviors in Metallic Glasses

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this work, the structural mechanisms of the cooling rate effect on the deformation behaviors in metallic glasses (MGs) is studied, by performing the synchrotron radiation-based experiments coupled with a series of simulations. It is found that a MG prepared at lower cooling rate has the higher yield strength and is more likely to soften itself, resulting in lower plasticity. This is because some atomic-to-cluster level structural factors, such as coordination numbers, atomic packing efficiencies, cluster concentrations and regularities. In addition, a quantitative analysis reveals that higher cooling rate leads to more free volumes, and significantly affect the evolution of free volumes during the compressive deformation, tuning the formation and the evolution of shear transformation zones, as well as the yield strength and the plasticity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Duwez, R.H. Willens, W. Klement, J. Appl. Phys. 31, 1136–1137 (1960)

    CAS  Google Scholar 

  2. L. Reichel, L. Schultz, D. Pohl, S. Oswald, S. Fahler, M. Werwinski, A. Edstrom, E.K. Delczeg-Czirjak, J. Rusz, J. Phys. Condens. Matter 27, 476002 (2015)

    CAS  Google Scholar 

  3. H.Y. Jung, S.J. Choi, K.G. Prashanth, M. Stoica, S. Scudino, S. Yi, U. Kühn, D.H. Kim, K.B. Kim, J. Eckert, Mater. Des. 86, 703–708 (2015)

    CAS  Google Scholar 

  4. C. Zhang, R.Q. Guo, Y. Yang, Y. Wu, L. Liu, Electrochim. Acta 56, 6380–6388 (2011)

    CAS  Google Scholar 

  5. C. Schuh, T. Hufnagel, U. Ramamurty, Acta Mater. 55, 4067–4109 (2007)

    CAS  Google Scholar 

  6. S.V. Ketov, Y.H. Sun, S. Nachum, Z. Lu, A. Checchi, A.R. Beraldin, H.Y. Bai, W.H. Wang, D.V. Louzguine-Luzgin, M.A. Carpenter, A.L. Greer, Nature 524, 200–203 (2015)

    CAS  Google Scholar 

  7. W.H. Wang, C. Dong, C.H. Shek, Mater. Sci. Eng. R 44, 45–89 (2004)

    Google Scholar 

  8. Y.Q. Cheng, A.J. Cao, H.W. Sheng, E. Ma, Acta Mater. 56, 5263–5275 (2008)

    CAS  Google Scholar 

  9. J. Wang, P.D. Hodgson, J. Zhang, W. Yan, C. Yang, J. Mater. Process. Technol. 209, 4601–4606 (2009)

    CAS  Google Scholar 

  10. H. Li, G.H. Wang, J.J. Zhao, X.F. Bian, J. Chem. Phys. 116, 10809–10815 (2002)

    CAS  Google Scholar 

  11. L. Yang, G.Q. Guo, L.Y. Chen, B. LaQua, J.Z. Jiang, Intermetallics 44, 94–100 (2014)

    CAS  Google Scholar 

  12. Y.J. Huang, J. Shen, J.F. Sun, Appl. Phys. Lett. 90, 081919 (2007)

    Google Scholar 

  13. Y. Liu, H. Bei, C.T. Liu, E.P. George, Appl. Phys. Lett. 90, 071909 (2007)

    Google Scholar 

  14. Z.Y. Liu, Y. Yang, S. Guo, X.J. Liu, J. Lu, Y.H. Liu, C.T. Liu, J. Alloys Compd. 509, 3269–3273 (2011)

    CAS  Google Scholar 

  15. C. Li, S. Kou, Y. Zhao, G. Liu, Y. Ding, Prog. Nat. Sci. 22, 21–25 (2012)

    Google Scholar 

  16. Y. Hu, H.H. Yan, Z.J. Yan, X.G. Wang, AIP Adv. 8, 105002 (2018)

    Google Scholar 

  17. Y. Yokoyama, K. Yamano, K. Fukaura, H. Sunada, A. Inoue, Scr. Mater. 44, 1529–1533 (2001)

    CAS  Google Scholar 

  18. R.D. Conner, W.L. Johnson, N.E. Paton, W.D. Nix, J. Appl. Phys. 94, 904–911 (2003)

    CAS  Google Scholar 

  19. W.H. Jiang, F.X. Liu, Y.D. Wang, H.F. Zhang, H. Choo, P.K. Liaw, Mat. Sci. Eng. A 430, 350–354 (2006)

    Google Scholar 

  20. W.B. Liao, Y.Y. Zhao, J.P. He, Y. Zhang, J. Alloys Compd. 555, 357–361 (2013)

    CAS  Google Scholar 

  21. X.H. Lin, W.L. Johnson, J. Appl. Phys. 78, 6514–6519 (1995)

    CAS  Google Scholar 

  22. D. Wang, H. Tan, Y. Li, Acta Mater. 53, 2969–2979 (2005)

    CAS  Google Scholar 

  23. N.H. Pryds, X. Huang, Metall. Mater. Trans. A 31, 3155–3166 (2000)

    Google Scholar 

  24. A.P. Hammersley, S.O. Svensson, M. Hanfland, A.N. Fitch, D. Hausermann, High Pressure Res. 14, 235–248 (1996)

    Google Scholar 

  25. T.E. Faber, J.M. Ziman, Philos. Mag. 11, 153–173 (1965)

    CAS  Google Scholar 

  26. M. Felderhoff, K. Klementiev, W. Grunert, B. Spliethoff, B. Tesche, J.M. Bellosta von Colbe, B. Bogdanovic, M. Hartel, A. Pommerin, F. Schuth, C. Weidenthaler, Phys. Chem. Chem. Phys. 6, 4369–4374 (2004)

    CAS  Google Scholar 

  27. R.L. McGreevy, J. Phys. Condens. Matter 13, R877–R913 (2001)

    CAS  Google Scholar 

  28. L. Yang, G.Q. Guo, L.Y. Chen, C.L. Huang, T. Ge, D. Chen, P.K. Liaw, K. Saksl, Y. Ren, Q.S. Zeng, B. LaQua, F.G. Chen, J.Z. Jiang, Phys. Rev. Lett. 109, 105502 (2012)

    CAS  Google Scholar 

  29. S. Ogata, F. Shimizu, J. Li, M. Wakeda, Y. Shibutani, Intermetallics 14, 1033–1037 (2006)

    CAS  Google Scholar 

  30. G. Duan, D. Xu, Q. Zhang, G. Zhang, T. Cagin, W.L. Johnson, W.A. Goddard, Phys. Rev. B 74, 019901 (2006)

    Google Scholar 

  31. Y.L. Sun, J. Shen, A.A. Valladares, J. Appl. Phys. 106, 073520 (2009)

    Google Scholar 

  32. K.W. Park, E. Fleury, H.K. Seok, Y.C. Kim, Intermetallics 19, 1168–1173 (2011)

    CAS  Google Scholar 

  33. S.D. Feng, K.C. Chan, L. Zhao, S.P. Pan, L. Qi, L.M. Wang, R.P. Liu, Mater. Des. 158, 248–255 (2018)

    CAS  Google Scholar 

  34. N. Mattern, P. Jóvári, I. Kaban, S. Gruner, A. Elsner, V. Kokotin, H. Franz, B. Beuneu, J. Eckert, J. Alloys Compd. 485, 163–169 (2009)

    CAS  Google Scholar 

  35. P. Jóvári, I. Kaban, B. Escher, K.K. Song, J. Eckert, B. Beuneu, M.A. Webb, N. Chen, J. Non-Cryst. Solids 459, 99–102 (2017)

    Google Scholar 

  36. K. Itoh, J. Saida, T. Otomo, J. Alloys Compd. 732, 585–592 (2018)

    CAS  Google Scholar 

  37. P.W. Wang, H.Y. Li, L. Yang, Metals 7, 444 (2017)

    Google Scholar 

  38. B.F. Lu, L.T. Kong, K.J. Laws, W.Q. Xu, Z. Jiang, Y.Y. Huang, M. Ferry, J.F. Li, Y.H. Zhou, Mater. Charact. 141, 41–48 (2018)

    CAS  Google Scholar 

  39. L. Yang, H.Y. Li, P.W. Wang, S.Y. Wu, G.Q. Guo, B. Liao, Q.L. Guo, X.Q. Fan, P. Huang, H.B. Lou, F.M. Guo, Q.S. Zeng, T. Sun, Y. Ren, L.Y. Chen, Sci. Rep. 7, 16739 (2017)

    CAS  Google Scholar 

  40. S. Plimpton, J. Comput. Phys. 117, 1–19 (1995)

    CAS  Google Scholar 

  41. Y.Q. Cheng, E. Ma, H.W. Sheng, Phys. Rev. Lett. 102, 245501 (2009)

    CAS  Google Scholar 

  42. W.G. Hoover, Phys. Rev. A 31, 1695–1697 (1985)

    CAS  Google Scholar 

  43. T. Frolov, K.A. Darling, L.J. Kecskes, Y. Mishin, Acta Mater. 60, 2158–2168 (2012)

    CAS  Google Scholar 

  44. Q. Zeng, H. Sheng, Y. Ding, L. Wang, W. Yang, J.Z. Jiang, W.L. Mao, H.-K. Mao, Science 332, 1404–1406 (2011)

    CAS  Google Scholar 

  45. Y. Xiao, Y. Wu, Z. Liu, H. Wu, Z. Lü, Sci. China Phys. Mech. 53, 394–398 (2010)

    CAS  Google Scholar 

  46. M. Wakeda, Y. Shibutani, S. Ogata, J. Park, Intermetallics 15, 139–144 (2007)

    CAS  Google Scholar 

  47. H.L. Peng, M.Z. Li, W.H. Wang, Phys. Rev. Lett. 106, 135503 (2011)

    CAS  Google Scholar 

  48. W. Da, P.W. Wang, Y.F. Wang, M.F. Li, L. Yang, Materials 12, 98 (2019)

    CAS  Google Scholar 

  49. J.L. Finney, D. Bernal John, Proc. R. Soc. London Ser. A 319, 479–493 (1970)

    CAS  Google Scholar 

  50. A.P. Tsai, Sci. Technol. Adv. Mater. 9, 013008 (2008)

    Google Scholar 

  51. X.K. Xi, L.L. Li, B. Zhang, W.H. Wang, Y. Wu, Phys. Rev. Lett. 99, 095501 (2007)

    Google Scholar 

  52. S.Y. Wang, M.J. Kramer, M. Xu, S. Wu, S.G. Hao, D.J. Sordelet, K.M. Ho, C.Z. Wang, Phys. Rev. B 79, 144205 (2009)

    Google Scholar 

  53. N.N. Medvedev, Y.I. Naberukhin, J. Non-Cryst. Solids 94, 402–406 (1987)

    CAS  Google Scholar 

  54. M.H. Cohen, D. Turnbull, J. Chem. Phys. 31, 1164–1169 (1959)

    CAS  Google Scholar 

  55. D. Turnbull, M.H. Cohen, J. Chem. Phys. 34, 120–125 (1961)

    CAS  Google Scholar 

  56. D. Turnbull, M.H. Cohen, J. Chem. Phys. 52, 3038–3041 (1970)

    Google Scholar 

  57. J. Sietsma, B.J. Thijsse, Phys. Rev. B 52, 3248–3255 (1995)

    CAS  Google Scholar 

  58. F. Li, X.J. Liu, H.Y. Hou, G. Chen, G.L. Chen, M. Li, Intermetallics 17, 98–103 (2009)

    CAS  Google Scholar 

  59. Y. Zhang, H. Hahn, J. Non-Cryst. Solids 357, 1420–1425 (2011)

    CAS  Google Scholar 

  60. X.X. Yue, C.T. Liu, S.Y. Pan, A. Inoue, P.K. Liaw, C. Fan, Physica B 547, 48–54 (2018)

    CAS  Google Scholar 

  61. A.S. Argon, Acta Metall. 27, 47–58 (1979)

    CAS  Google Scholar 

  62. A.S. Argon, J. Phys. Chem. Solids 43, 945–961 (1982)

    CAS  Google Scholar 

  63. Y. Shi, M.B. Katz, H. Li, M.L. Falk, Phys. Rev. Lett. 98, 185505 (2007)

    Google Scholar 

  64. S.D. Feng, W. Jiao, S.P. Pan, L. Qi, W. Gao, L.M. Wang, G. Li, M.Z. Ma, R.P. Liu, J. Non-Cryst. Solids 430, 94–98 (2015)

    CAS  Google Scholar 

  65. M.Q. Jiang, G. Wilde, L.H. Dai, Mech. Mater. 81, 72–83 (2015)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Shanghai Synchrotron Radiation Facility in China, the Hasylab in Germany, the National Synchrotron Radiation Laboratory in China, for the use of the advanced synchrotron radiation facilities. Financial supports from the National Natural Science Foundation of China (Grant No. 51471088) and the Fundamental Research Funds for the Central Universities (Grant No. NE2015004) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, B., Li, Mf., Xiong, F. et al. Structural Mechanisms of the Cooling Rate Effect on the Deformation Behaviors in Metallic Glasses. Met. Mater. Int. 27, 1060–1068 (2021). https://doi.org/10.1007/s12540-019-00513-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00513-x

Keywords

Navigation