Skip to main content

Specific Response of Additively Manufactured AlSi9Cu3Fe Alloy to Precipitation Strengthening

Abstract

The additive manufacturing of Al–Si–Cu/Mg alloys along with their precipitation strengthening represents a promising option of producing high-strength complex-shaped light-weight components for special applications in automotive or aerospace. In this paper, we follow our previous research on AlSi9Cu3Fe alloy prepared by one of the additive manufacturing technologies, selective laser melting (SLM). We characterize the precipitation strengthening of this material during conventional T6 heat treatment, and also present the possibility of its precipitation strengthening by annealing at temperatures of 413–453 K without previous solutionizing. We revealed the specific response of the studied material consisting in the simultaneous precipitation of semi-coherent θ′ precipitates and Si platelets. By characterization of hardness, mechanical performance under tensile loading and microstructure, we demonstrate that the AlSi9Cu3Fe alloy is not stable when prepared by SLM and its stability can be induced by additional heat treatment. The results of our work thus yield with a practical recommendation for applications where temperature increase may occur.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    C. Reeb, H. Zak, B. Tonn, in Aluminium alloys, ed. by J. Hirsch, B. Skrotzki, G. Gottstein (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008), pp. 121–126

    Google Scholar 

  2. 2.

    E.O. Olakanmi, R.F. Cochrane, K.W. Dalgarno, Prog. Mater Sci. 74, 401 (2015)

    CAS  Google Scholar 

  3. 3.

    H. Ye, J. Mater. Eng. Perform. 12, 288 (2003)

    CAS  Google Scholar 

  4. 4.

    J.E. Hatch, Aluminum: Properties and Physical Metallurgy, 10th edn. (AMS International, Metals Park, 2005)

    Google Scholar 

  5. 5.

    R.N. Lumley, R.G. O’Donnell, D.R. Gunasegaram et al., Metall. Mater. Trans. A 38, 2564 (2007)

    Google Scholar 

  6. 6.

    L.-Z. Wang, S. Wang, X. Hong, J. Manuf. Process. 35, 492 (2018)

    Google Scholar 

  7. 7.

    D. Manfredi, F. Calignano, M. Krishnan et al., Materials 6, 856 (2013)

    CAS  Google Scholar 

  8. 8.

    N. Read, W. Wang, K. Essa et al., Mater. Des. 65, 417 (2015)

    CAS  Google Scholar 

  9. 9.

    C.S. Rakesh, N. Priyanka, R. Jayaganthan et al., Mater. Today Proc. 5, 17231 (2018)

    CAS  Google Scholar 

  10. 10.

    M. Fousova, D. Dvorsky, M. Vronka et al., Materials 11, 1918 (2018)

    Google Scholar 

  11. 11.

    Material data sheet: EOS aluminium AlSi10 Mg (2014), http://www.eos.info/material-m. Accessed 21 June 2017

  12. 12.

    UNI EN 1706:2010 Aluminium and Aluminium Alloys Castings: Chemical Composition and Mechanical Properties (Italian National Standards Institute, 2010)

  13. 13.

    M. Roudnicka, D. Dvorsky, D. Vojtech, IOP Conf. Series: Mater. Sci. Eng. 461, 012071 (2018)

    Google Scholar 

  14. 14.

    Y. Li, D. Gu, Mater. Des. 63, 856 (2014)

    CAS  Google Scholar 

  15. 15.

    A.M. Samuel, H.W. Doty, S. Valtierra et al., Int. J. Cast Metal. Res. 26, 354 (2013)

    CAS  Google Scholar 

  16. 16.

    L. Hurtalova, E. Tillova, M. Chalupova, Eng. Trans. 61, 197 (2013)

    Google Scholar 

  17. 17.

    S.-S. Ahn, S. Pathan, J.-M. Koo et al., Materials 11, 2150 (2018)

    Google Scholar 

  18. 18.

    H. Barhoumi, S. Souissi, M.B. Amar et al., Kovove Materialy 54, 249 (2016)

    CAS  Google Scholar 

  19. 19.

    A.M.A. Mohamed, F.H. Samuel, in Heat Treatment: Conventional and Novel Applications, Chapter 4, ed. by F. Czerwinski (2012)

  20. 20.

    S. Seifeddine, G. Timelli, I.L. Svensson, Int. Foundry Res. 59, 2 (2007)

    Google Scholar 

  21. 21.

    D. Apelian, S. Shivkumar, G. Sigworth, AFS Trans. 97, 727 (1989)

    Google Scholar 

  22. 22.

    X.P. Li, X.J. Wang, M. Saunders et al., Acta Mater. 95, 74 (2015)

    CAS  Google Scholar 

  23. 23.

    Y.Y. Kaplanskii, A.A. Zaitsev, E.A. Levashov et al., Mater. Sci. Eng., A 717, 48 (2018)

    CAS  Google Scholar 

  24. 24.

    W.F. Smith, Structure and Properties of Engineering Alloys, 2nd edn. (McGraw-Hill, New York, 1993)

    Google Scholar 

  25. 25.

    E. Sjölander, S. Seifeddine, J. Mater. Process. Technol. 210, 1249 (2010)

    Google Scholar 

  26. 26.

    H.G. Kang, M. Kida, H. Miyahara et al., AFS Trans. 27, 507 (1999)

    Google Scholar 

  27. 27.

    G. Wang, X. Bian, X. Liu et al., J. Mater. Sci. 39, 2535 (2004)

    CAS  Google Scholar 

  28. 28.

    W. Reif, J. Dutkiewicz, R. Ciach et al., Mater. Sci. Eng., A 234-236, 165 (1997)

    Google Scholar 

  29. 29.

    A. Fabrizi, S. Capuzzi, A. De Mori et al., Metals 8, 750 (2018)

    CAS  Google Scholar 

  30. 30.

    N. Takata, H. Kodaira, K. Sekizawa et al., Mater. Sci. Eng., A 704, 218 (2017)

    CAS  Google Scholar 

  31. 31.

    S. Shivkumar, C. Keller, D. Apelian, AFS Trans. 98, 905 (1990)

    CAS  Google Scholar 

  32. 32.

    Y. Du, Y.A. Chang, B. Huang et al., Mater. Sci. Eng., A 363, 140 (2003)

    Google Scholar 

  33. 33.

    M. Fousova, D. Dvorsky, A. Michalcova et al., Mater. Charact. 137, 119 (2018)

    CAS  Google Scholar 

  34. 34.

    H.S. Rosenbaum, D. Turnbull, Acta Metall. 6, 653 (1958)

    CAS  Google Scholar 

  35. 35.

    K. Nakagawa, T. Kanadani, L. Anthony et al., Mater. Trans. 46, 779 (2005)

    CAS  Google Scholar 

  36. 36.

    E. Ozawa, H. Kimura, Mater. Sci. Eng. 8, 327 (1971)

    CAS  Google Scholar 

  37. 37.

    F. Lasagni, B. Mingler, M. Dumont et al., Mater. Sci. Eng., A 480, 383 (2008)

    Google Scholar 

  38. 38.

    I.J. Polmear, Light Alloys; From Traditional Alloys to Nanocrystals, 4 edn. (Butterworth Heinemann, Oxford, 2006), pp. 43–69

    Google Scholar 

  39. 39.

    H.R.G. Geier, T. Pabel, M. Hopfinger, Giessereiforschung 58, 32 (2006)

    Google Scholar 

  40. 40.

    K. Ma, H. Wen, T. Hu et al., Acta Mater. 62, 141 (2014)

    CAS  Google Scholar 

  41. 41.

    S. Thangaraju, M. Heilmaier, B.S. Murty et al., Adv. Eng. Maters 14, 892 (2012)

    CAS  Google Scholar 

  42. 42.

    A. Hadadzadeh, C. Baxter, B.S. Amirkhiz et al., Addit. Manuf. 23, 108 (2018)

    CAS  Google Scholar 

  43. 43.

    J. Wu, X.Q. Wang, W. Wang et al., Acta Mater. 117, 311 (2016)

    CAS  Google Scholar 

  44. 44.

    A. Brahmi, T. Gerique, M. Torralba et al., Scr. Mater. 37, 1623 (1997)

    CAS  Google Scholar 

  45. 45.

    E. Ghassemali, M. Riestra, T. Bogdanoff et al., Procedia Eng. 207, 19 (2017)

    CAS  Google Scholar 

  46. 46.

    J.R. Davis, Aluminum and Aluminum Alloys (ASM International, Cleveland, 1993), p. 33

    Google Scholar 

  47. 47.

    S. Bagherifard, N. Beretta, S. Monti et al., Mater. Des. 145, 28 (2018)

    CAS  Google Scholar 

  48. 48.

    P. Wei, Z. Wei, Z. Chen et al., Appl. Surf. Sci. 408, 38 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

This work obtained a financial support from the Ministry of Education, Youth and Sport of the Czech Republic for specific university research (Project no. 21-SVV/2019).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michaela Roudnická.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roudnická, M., Molnárová, O., Dvorský, D. et al. Specific Response of Additively Manufactured AlSi9Cu3Fe Alloy to Precipitation Strengthening. Met. Mater. Int. 26, 1168–1181 (2020). https://doi.org/10.1007/s12540-019-00504-y

Download citation

Keywords

  • Aluminium alloys
  • AlSi9Cu3Fe
  • Additive manufacturing
  • Selective laser melting
  • Heat treatment