Annealing Effects in Cast Commercial Aluminium Al–Mg–Zn–Cu(–Sc–Zr) Alloys

Abstract

Precipitation reactions of the cast Al–3.4 at%Mg–2.7 at%Zn–0.80 at%Cu–0.10 at%Fe–0.05 at%Si alloy with and without addition of 0.14 at%Sc and 0.06 at%Zr were characterized by electrical resistometry, electron microscopy, X-ray diffraction, thermal analysis, microhardness testing, and positron annihilation. The AlMgZnCuScZr alloy contains a grain boundary T-phase (Mg32(Al,Cu,Zn)49) with a cubic and/or quasicrystalline structure. The AlMgZnCu alloy contains a mixture of MgZn2- and the T-phase. Primary multilayer Al3(Sc,Zr) particles precipitated during casting and subsequent cooling. The particles have a layered Al3(Sc,Zr) + α-Al + Al3(Sc,Zr) structure, i.e. consist of regions enriched with both Sc and Zr. Small atomic Mg,Zn(,Cu)-rich clusters coherent with the matrix were formed during the cooling of both alloys and/or in the course of their storage at ambient temperature. Their dissolution enables precipitation of the transient η′- and/or stable η-phases of the AlZnMgCu system in both investigated alloys. The effective activation energy for the dissolution of the clusters was calculated as ~ 103 kJ/mol. Annealing of the AlMgZnCuScZr alloy above 300 °C leads to a formation of the secondary Al3(Sc,Zr) particles which cause precipitation hardening and guarantee thermal stability of mechanical properties. Addition of Sc and Zr micro alloying elements resulted in a substantial grain refinement. The grain size remains unchanged up to isochronal annealing at 390 °C.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    L.S. Toropova, D.G. Eskin, M.L. Kharakterova, T.V. Dobatkina, Advanced Aluminium Alloys Containing Scandium—Structure and Properties (Gordon and Breach Science Publisher, The Netherlands, 1998)

    Google Scholar 

  2. 2.

    S. Chen, L. Jiyu, H. Gui-yun, C. Kanghua, H. Lanping, J. Alloys Compd. (2018). https://doi.org/10.1016/j.jallcom.2018.05.063

    Article  Google Scholar 

  3. 3.

    P. Lang, T. Wojcik, E. Povoden-Karadeniz, A. Falahati, E. Kozeschnik, J. Alloys Compd. (2014). https://doi.org/10.1016/j.jallcom.2014.04.119

    Article  Google Scholar 

  4. 4.

    Z. Li, B. Xiong, Y. Zhang, B. Zhu, F. Wang, H. Liu, Mater. Charact. (2008). https://doi.org/10.1016/j.matchar.2007.01.006

    Article  Google Scholar 

  5. 5.

    K.R. Prasanta, M.M. Ghosh, K.S. Ghosh, Mater. Charact. (2015). https://doi.org/10.1016/j.matchar.2015.03.025

    Article  Google Scholar 

  6. 6.

    K.S. Ghosh, N. Gao, M.J. Starink, Mater. Sci. Eng. A (2012). https://doi.org/10.1016/j.msea.2012.05.026

    Article  Google Scholar 

  7. 7.

    Y. Wang, Z. Li, B. Xiong, K. Wen, S. Huang, X. Li, Y. Zhang, Metal. Mater. Int. (2019). https://doi.org/10.1007/s12540-018-00210-1

    Article  Google Scholar 

  8. 8.

    M.J. Starink, S.C. Wang, Acta Mater. (2003). https://doi.org/10.1016/S1359-6454(03)00363-X

    Article  Google Scholar 

  9. 9.

    X.B. Yang, J.H. Chen, J.Z. Liu, F. Qin, J. Xie, C.L. Wu, J. Alloys Compd. (2014). https://doi.org/10.1016/j.jallcom.2014.04.185

    Article  Google Scholar 

  10. 10.

    W. Yang, S. Ji, M. Wang, Z. Li, J. Alloys Compd. (2014). https://doi.org/10.1016/j.jallcom.2014.05.061

    Article  Google Scholar 

  11. 11.

    W.X. Shu, L.G. Hou, C. Zhang, F. Zhang, J.C. Liu, J.T. Liu, L.Z. Zhuang, J.S. Zhang, Mater. Sci. Eng. A (2016). https://doi.org/10.1016/j.msea.2016.01.039

    Article  Google Scholar 

  12. 12.

    P.A. Rometsch, Y. Zhang, S. Khight, Trans. Nonferrous Met. Soc. China (2014). https://doi.org/10.1016/S1003-6326(14)63306-9

    Article  Google Scholar 

  13. 13.

    M. Zhang, T. Liu, C. He, J. Ding, E. Liu, C. Shi, J. Li, N. Zhao, J. Alloys Compd. (2016). https://doi.org/10.1016/j.jallcom.2015.10.296

    Article  Google Scholar 

  14. 14.

    J. Tang, H. Chen, X. Zhang, S. Liu, W. Liu, H. Ouyang, H. Li, Trans. Nonferrous Met. Soc. China (2012). https://doi.org/10.1016/S1003-6326(11)61313-7

    Article  Google Scholar 

  15. 15.

    M. Vlach, V. Kodetova, B. Smola, J. Cizek, T. Kekule, M. Cieslar, H. Kudrnova, L. Bajtosova, M. Leibner, I. Prochazka, Kovove Mater. (2018). https://doi.org/10.4149/km_2018_6_367

    Article  Google Scholar 

  16. 16.

    P. Priya, D.R. Johnson, M.J.M. Krane, Comput. Mater. Sci. (2017). https://doi.org/10.1016/j.commatsci.2017.08.008

    Article  Google Scholar 

  17. 17.

    P. Montagné, M. Tillard, J. Alloys Compd. (2016). https://doi.org/10.1016/j.jallcom.2015.09.201

    Article  Google Scholar 

  18. 18.

    N.Q. Vo, D.C. Dunand, D.N. Seidman, Mater. Sci. Eng. A (2016). https://doi.org/10.1016/j.msea.2016.09.065

    Article  Google Scholar 

  19. 19.

    M. Slapakova, B. Krivska, J. Bajer, O. Gryndin, M. Stolbchenko, M. Cieslar, Acta Phys. Pol. A (2018). https://doi.org/10.12693/APhysPolA.134.871

    Article  Google Scholar 

  20. 20.

    M. Kolar, V. Očenášek, J. Uhlíř, I. Stulíková, B. Smola, M. Vlach, V. Neubert, K. Šperlink, Mater. Sci. Forum (2008). https://doi.org/10.4028/www.scientific.net/MSF.567-568.357

    Article  Google Scholar 

  21. 21.

    M. Vlach, B. Smola, I. Stulikova, V. Ocenasek, Int. J. Mater. Res. (2009). https://doi.org/10.3139/146.110022

    Article  Google Scholar 

  22. 22.

    N.A. Belov, E.A. Naumova, T.K. Akopyan, V.V. Doroshenko, J. Alloys Compd. (2018). https://doi.org/10.1016/j.jallcom.2018.05.281

    Article  Google Scholar 

  23. 23.

    W. Lefebvre, F. Danoix, H. Hallem, B. Forbord, A. Bostel, K. Martinsen, J. Alloys Compd. (2009). https://doi.org/10.1016/j.jallcom.2008.02.043

    Article  Google Scholar 

  24. 24.

    Z. Yin, Q. Pan, Y. Zhang, F. Jiang, Mater. Sci. Eng. A (2000). https://doi.org/10.1016/S0921-5093(99)00682-6

    Article  Google Scholar 

  25. 25.

    W.G. Zhang, Y.C. Ye, L.J. He, P.J. Li, X. Feng, L.S. Novikov, Mater. Sci. Eng. A (2013). https://doi.org/10.1016/j.msea.2013.04.067

    Article  Google Scholar 

  26. 26.

    S. Costa, H. Puga, J. Barbosa, A.M.P. Pinto, Mater. Des. (2012). https://doi.org/10.1016/j.matdes.2012.06.019

    Article  Google Scholar 

  27. 27.

    V.G. Davydov, T.D. Rostova, V.V. Zakharov, Y.A. Filatov, V.I. Yelagin, Mater. Sci. Eng. A (2000). https://doi.org/10.1016/S0921-5093(99)00652-8

    Article  Google Scholar 

  28. 28.

    M.S. Kaiser, S. Datta, A. Roychowdhury, M.K. Banerjee, Mater. Charact. (2008). https://doi.org/10.1016/j.matchar.2008.03.006

    Article  Google Scholar 

  29. 29.

    M. Vlach, J. Čížek, B. Smola, O. Melikhova, M. Vlček, V. Kodetová, H. Kudrnová, P. Hruška, Mater. Charact. (2017). https://doi.org/10.1016/j.matchar.2017.04.017

    Article  Google Scholar 

  30. 30.

    Y. Deng, Z. Yin, Q. Pan, G. Xu, Y. Duan, Y. Wang, J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2016.10.094

    Article  Google Scholar 

  31. 31.

    A. De Luca, D.N. Seidman, D.C. Dunand, Acta Mater. (2019). https://doi.org/10.1016/j.actamat.2018.11.031

    Article  Google Scholar 

  32. 32.

    P. Okle, J.D. Lin, T. Zhu, D.C. Dunand, D.N. Seidman, Mater. Sci. Eng. A (2019). https://doi.org/10.1016/j.msea.2018.10.058

    Article  Google Scholar 

  33. 33.

    M. Vlach, I. Stulikova, B. Smola, H. Cisarova, J. Piesova, S. Danis, R. Gemma, J. Malek, D. Tanprayoon, V. Neubert, Int. J. Mater. Res. (2012). https://doi.org/10.3139/146.110712

    Article  Google Scholar 

  34. 34.

    S. Zhou, Z. Zhang, M. Li, D. Pan, H. Su, X. Du, P. Li, Y. Wu, Mater. Des. (2016). https://doi.org/10.1016/j.matdes.2015.10.132

    Article  Google Scholar 

  35. 35.

    S. Zhou, Z. Zhang, M. Li, D. Pan, H. Su, X. Du, P. Li, Y. Wu, Mater. Lett. (2016). https://doi.org/10.1016/j.matlet.2015.10.072

    Article  Google Scholar 

  36. 36.

    S. Zhou, Z. Zhang, M. Li, D. Pan, H. Su, X. Du, P. Li, Y. Wu, Mater. Charact. (2016). https://doi.org/10.1016/j.matchar.2016.05.011

    Article  Google Scholar 

  37. 37.

    J.H. Li, M. Wiessner, M. Alby, S. Wurster, B. Sartory, F. Hofer, P. Schumacher, Mater. Charact. (2015). https://doi.org/10.1016/j.matchar.2015.01.018

    Article  Google Scholar 

  38. 38.

    C. Xu, R. Du, X. Wang, S. Hanada, H. Yamagata, W. Wang, C. Ma, Trans. Nonferrous Met. Soc. China (2014). https://doi.org/10.1016/S1003-6326(14)63366-5

    Article  Google Scholar 

  39. 39.

    K.B. Hyde, A.F. Norman, P.B. Prangnell, Acta Mater. (2001). https://doi.org/10.1016/S1359-6454(01)00050-7

    Article  Google Scholar 

  40. 40.

    A.F. Norman, P.B. Prangnell, R.S. McEwen, Acta Mater. (1998). https://doi.org/10.1016/S1359-6454(98)00257-2

    Article  Google Scholar 

  41. 41.

    M. Hájek, J. Veselý, M. Cieslar, Mater. Sci. Eng. A (2007). https://doi.org/10.1016/j.msea.2006.01.175

    Article  Google Scholar 

  42. 42.

    J. Čížek, J. Mater. Sci. Technol. (2018). https://doi.org/10.1016/j.jmst.2017.11.050

    Article  Google Scholar 

  43. 43.

    R. Krause-Rehberg, H.S. Leipner, Positron Annihilation in Semiconductors (Springer, Berlin, 1999)

    Book  Google Scholar 

  44. 44.

    A. Somoza, M.P. Petkov, K.G. Lynn, A. Dupasquier, Phys. Rev. B (2002). https://doi.org/10.1103/PhysRevB.65.094107

    Article  Google Scholar 

  45. 45.

    F. Bečvář, J. Čížek, I. Procházka, J. Janotová, Nucl. Instrum. Methods A (2005). https://doi.org/10.1016/j.nima.2004.09.031

    Article  Google Scholar 

  46. 46.

    J. Čížek, M. Vlček, I. Procházka, Nucl. Instrum. Methods Phys. Res. A (2010). https://doi.org/10.1016/j.nima.2010.07.046

    Article  Google Scholar 

  47. 47.

    M.J. Starink, Thermochim. Acta (2004). https://doi.org/10.1016/S0040-6031(03)00144-8

    Article  Google Scholar 

  48. 48.

    N.Q. Chinh, J. Lendvai, D.H. Ping, K. Hono, J. Alloys Compd. (2004). https://doi.org/10.1016/j.jallcom.2003.11.175

    Article  Google Scholar 

  49. 49.

    M. Dellah, M. Bournane, K.A. Ragab, Y. Sadaoui, A.F. Sirenko, Mater. Des. (2013). https://doi.org/10.1016/j.matdes.2013.02.078

    Article  Google Scholar 

  50. 50.

    C. Antonione, F. Marino, G. Riontino, S. Abis, E. Russo, Mater. Chem. Phys. (1988). https://doi.org/10.1016/0254-0584(88)90055-7

    Article  Google Scholar 

  51. 51.

    V. Kodetová, M. Vlach, B. Smola, T. Kekule, S. Daniš, H. Kudrnová, J. Málek, Acta Phys. Pol. A (2018). https://doi.org/10.12693/APhysPolA.134.631

    Article  Google Scholar 

  52. 52.

    M. Murayama, K. Hono, Acta Mater. (1999). https://doi.org/10.1016/S1359-6454(99)00033-6

    Article  Google Scholar 

  53. 53.

    T.M. Hall, A.N. Goland, C.L. Snead, Phys. Rev. B (1974). https://doi.org/10.1103/PhysRevB.10.3062

    Article  Google Scholar 

  54. 54.

    M. Liu, J. Čížek, C.S.T. Chang, J. Banhart, Acta Mater. (2015). https://doi.org/10.1016/j.actamat.2015.02.019

    Article  Google Scholar 

  55. 55.

    N. Afify, A.F. Gaber, G. Abbady, Mater. Sci. Appl. (2011). https://doi.org/10.4236/msa.2011.25056

    Article  Google Scholar 

  56. 56.

    S. Abis, G. Riontino, Mater. Lett. (1987). https://doi.org/10.1016/0167-577X(87)90060-7

    Article  Google Scholar 

  57. 57.

    J. Buha, R.N. Lumley, A.G. Crosky, Mater. Sci. Eng. A (2008). https://doi.org/10.1016/j.msea.2008.02.039

    Article  Google Scholar 

  58. 58.

    J.C. Werenskiold, A. Deschamps, Y. Bréchet, Mater. Sci. Eng. A (2000). https://doi.org/10.1016/S0921-5093(00)01247-8

    Article  Google Scholar 

  59. 59.

    S.V. Emani, J. Benedyk, P. Nash, D. Chen, J. Mater. Sci. (2009). https://doi.org/10.1007/s10853-009-3879-8

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by The Czech Science Foundation (GACR), Project 17-17139S. The authors are also grateful to Ivana Stulíková, Tamara Čučková and Bohumil Smola for their help. PH acknowledges support by ERDF under the project CZ.02.1.01/0.0/0.0/15_003/0000485.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Martin Vlach.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vlach, M., Čížek, J., Kodetová, V. et al. Annealing Effects in Cast Commercial Aluminium Al–Mg–Zn–Cu(–Sc–Zr) Alloys. Met. Mater. Int. 27, 995–1004 (2021). https://doi.org/10.1007/s12540-019-00499-6

Download citation

Keywords

  • 7xxx series
  • Clusters
  • TEM
  • Positron annihilation
  • Al3(Sc,Zr) particles
  • Activation energy