Skip to main content
Log in

Experimental and Modelling Study of Ultra-Fine Grained ZK60 Magnesium Alloy with Simultaneously Improved Strength and Ductility Processed by Parallel Tubular Channel Angular Pressing

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Ultrafine grained ZK60 magnesium (UFG–ZK60 Mg) tubes were successfully fabricated by a parallel tubular-channel angular pressing (PTCAP) process. The number of pass effects on the phase composition, microstructural features and mechanical properties were examined. Also, two types of Artificial Neural Network known as Radial Basis Function (RBF) and Multi-Layer Perceptron (MLP) were employed to accurately estimate mechanical behavior of the PTCAP-processed ZK60 Mg alloy. The results showed that all the processed tubes had more refined microstructure with ~ 7 to 0.9 μm grain sizes, which consist of an average crystallite size between 68 ± 8 and 51 ± 8 nm, compared to the as-received specimen with a mean grain size of ~ 90 μm. Similar XRD profiles were achieved following different PTCAP passes, however, some discrepancies were observed as the number of passes increased, which corroborated the structural changes during the PTCAP process. The microscopic observations also revealed the microstructural changes by increasing the PTCAP passes. The hardness of the processed tubes increased with the number of PTCAP passes, from 77 ± 2 HV for the unprocessed alloy to a maximum of 111 ± 2 HV at three PTCAP passes. The PTCAP process increased not only mechanical strength but also the ductility of the processed tubes, where the highest yield strength (σYS = 320 MPa), ultimate tensile strength (σUTS = 397 MPa) and elongation to failure (δ = 14%) values were obtained at the second pass of PTCAP. However, with increasing number of PTCAP passes to three, δ reached 4% and σYS and σUTS decreased by 31% and 11%, respectively. Findings from the neural based-predictive models indicated that both RBF and MLP can be employed for accurately estimating the mechanical properties of the PTCAP-processed ZK60 Mg alloy.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. F. Froes, D. Eliezer, E. Aghion, JOM 50, 30–34 (1998)

    CAS  Google Scholar 

  2. K. Kubota, M. Mabuchi, K. Higashi, J. Mater. Sci. 34, 2255–2262 (1999)

    CAS  Google Scholar 

  3. B. Mordike, T. Ebert, Mater. Sci. Eng., A 302, 37–45 (2001)

    Google Scholar 

  4. H. Zhang, L. Xie, X. Shen, T. Shang, R. Luo, X. Li, T. You, J. Wang, N. Huang, Y. Wang, J. Mater. Chem. B 6, 6936–6949 (2018)

    CAS  Google Scholar 

  5. M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Biomaterials 27, 1728–1734 (2006)

    CAS  Google Scholar 

  6. D. Griffiths, B. Davis, J. Robson, Metallurg. Mater. Trans. A 49, 321–332 (2018)

    CAS  Google Scholar 

  7. I. Ulacia, I. Hurtado, J. Imbert, C. Salisbury, M. Worswick, A. Arroyo, Steel Res. Int. 80, 344–350 (2009)

    CAS  Google Scholar 

  8. A.A. Luo, Int. Mater. Rev. 49, 13–30 (2004)

    CAS  Google Scholar 

  9. S. You, Y. Huang, K.U. Kainer, N. Hort, J. Magnes. Alloys 5, 239–253 (2017)

    CAS  Google Scholar 

  10. Z. Ye, X. Teng, G. Lou, G. Zhou, J. Leng, Mater. Res. Exp. 4, 086502 (2017)

    Google Scholar 

  11. K. Matsubara, Y. Miyahara, Z. Horita, T. Langdon, Acta Mater. 51, 3073–3084 (2003)

    CAS  Google Scholar 

  12. S. Agnew, J. Horton, T. Lillo, D. Brown, Scripta Mater. 50, 377–381 (2004)

    CAS  Google Scholar 

  13. V. Segal, Materials 11, 1175 (2018)

    Google Scholar 

  14. H. Sun, Y.-N. Shi, M.-X. Zhang, K. Lu, Acta Mater. 55, 975–982 (2007)

    CAS  Google Scholar 

  15. M.S. Khorrami, N. Saito, Y. Miyashita, M. Kondo, Mater. Sci. Eng., A 744, 349–364 (2019)

    Google Scholar 

  16. Y. Cao, S. Ni, X. Liao, M. Song, Y. Zhu, Mater. Sci. Eng. Rep. 133, 1–59 (2018)

    Google Scholar 

  17. D. Jafarlou, E. Zalnezhad, M. Hassan, M. Ezazi, N. Mardi, A. Hamouda, M. Hamdi, G. Yoon, Mater. Des. 90, 1124–1135 (2016)

    CAS  Google Scholar 

  18. P. Bridgman, J. Appl. Phys. 8, 328–336 (1937)

    Google Scholar 

  19. A. K. Ghosh Method of producing a fine grain aluminum alloy using three axes deformation, Google Patents, (1988)

  20. Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Acta Mater. 47, 579–583 (1999)

    CAS  Google Scholar 

  21. Y. Huang, P. Prangnell, Scripta Mater. 56, 333–336 (2007)

    CAS  Google Scholar 

  22. A. Tyagi, S. Banerjee, Materials Under Extreme Conditions: Recent Trends and Future Prospects (Elsevier, London, 2017)

    Google Scholar 

  23. G. Faraji, M.M. Mashhadi, H.S. Kim, Mater. Lett. 65, 3009–3012 (2011)

    CAS  Google Scholar 

  24. M. Mesbah, G. Faraji, A. Bushroa, Met. Mater. Int. 22, 288–294 (2016)

    CAS  Google Scholar 

  25. G. Faraji, A. Babaei, M.M. Mashhadi, K. Abrinia, Mater. Lett. 77, 82–85 (2012)

    CAS  Google Scholar 

  26. G. Faraji, M. Mousavi-Mashhadia, J. Adv. Mater. Proc. 1, 23–32 (2013)

    Google Scholar 

  27. S. Torbati-Sarraf, R. Mahmudi, Mater. Sci. Eng., A 527, 3515–3520 (2010)

    Google Scholar 

  28. A. Ma, J. Jiang, N. Saito, I. Shigematsu, Y. Yuan, D. Yang, Y. Nishida, Mater. Sci. Eng., A 513, 122–127 (2009)

    Google Scholar 

  29. G. Faraji, P. Yavari, S. Aghdamifar, M.M. Mashhadi, J. Mater. Sci. Technol. 30, 134–138 (2014)

    CAS  Google Scholar 

  30. F. Kang, J.T. Wang, Y. Peng, Mater. Sci. Eng., A 487, 68–73 (2008)

    Google Scholar 

  31. P.R. Cetlin, M.T.P. Aguilar, R.B. Figueiredo, T.G. Langdon, J. Mater. Sci. 45, 4561–4570 (2010)

    CAS  Google Scholar 

  32. F. Fereshteh-Saniee, A. Sepahi-Boroujeni, S. Sepahi-Boroujeni, Int. J. Adv. Manuf. Technol. 86, 3471–3482 (2016)

    Google Scholar 

  33. E. Maleki, Mater. Today: Proc. 3, 2197–2206 (2016)

    Google Scholar 

  34. M. Bahrami-Karkevandi, B. Nasiri-Tabrizi, K.Y. Wong, R. Ebrahimi-Kahrizsangi, A. Fallahpour, S. Saber-Samandari, S. Baradaran, W.J. Basirun, Mater. Chem. Phys. 224, 47–64 (2019)

    CAS  Google Scholar 

  35. S. Hamedi, Z. Kordrostami, A. Yadollahi (2019). Artificial neural network approaches for modeling absorption spectrum of nanowire solar cells. Neural Comput. Appl, 1–11.

  36. E. Mostaed, M. Hashempour, A. Fabrizi, D. Dellasega, M. Bestetti, F. Bonollo, M. Vedani, J. Mech. Behav. Biomed. Mater. 37, 307–322 (2014)

    CAS  Google Scholar 

  37. F.-D. Dumitru, O.F. Higuera-Cobos, J. Cabrera, Mater. Sci. Eng., A 594, 32–39 (2014)

    CAS  Google Scholar 

  38. Y. He, Q. Pan, Y. Qin, X. Liu, W. Li, Y. Chiu, J.J. Chen, J. Alloy. Compd. 492, 605–610 (2010)

    CAS  Google Scholar 

  39. V. Chuvil’deev, T. Nieh, M.Y. Gryaznov, V. Kopylov, A. Sysoev, J. Alloy. Compd. 378, 253–257 (2004)

    Google Scholar 

  40. R.B. Figueiredo, T.G. Langdon, Mater. Sci. Eng., A 501, 105–114 (2009)

    Google Scholar 

  41. G.M. Xie, Z.A. Luo, P. Xue, G.D. Wang, Superplastic behavior of friction stir processed ZK60 magnesium alloy. Mater. Trans. 1111141505 (2011)

  42. R.B. Figueiredo, T.G. Langdon, Mater. Sci. Eng., A 503, 141–144 (2009)

    Google Scholar 

  43. R.B. Figueiredo, T.G. Langdon, Scripta Mater. 61, 84–87 (2009)

    CAS  Google Scholar 

  44. S.A. Torbati-Sarraf, T.G. Langdon, J. Alloy. Compd. 613, 357–363 (2014)

    CAS  Google Scholar 

  45. S.A. Torbati-Sarraf, S. Sabbaghianrad, T.G. Langdon, Пиcьмa o мaтepиaлax 5, 287–293 (2015)

    Google Scholar 

  46. S.A. Torbati-Sarraf, R. Alizadeh, R. Mahmudi, T.G. Langdon, Mater. Sci. Eng., A 708, 432–439 (2017)

    CAS  Google Scholar 

  47. A. Fata, G. Faraji, M. Mashhadi, V. Tavakkoli, Mater. Sci. Eng., A 674, 9–17 (2016)

    CAS  Google Scholar 

  48. M. Eftekhari, A. Fata, G. Faraji, M. Mashhadi, J. Alloy. Compd. 742, 442–453 (2018)

    CAS  Google Scholar 

  49. H. Abdolvand, G. Faraji, J.S. Karami, M. Baniasadi, Bull. Mater. Sci. 40, 1471–1479 (2017)

    CAS  Google Scholar 

  50. M. Mesbah, F. Fadaeifard, A. Karimzadeh, B. Nasiri-Tabrizi, A. Rafieerad, G. Faraji, A. Bushroa, Met. Mater. Int. 22, 1098–1107 (2016)

    CAS  Google Scholar 

  51. A. Zakiyuddin, K. Lee, Arch. Metallur. Mater. 63, 1467–1471 (2018)

    Google Scholar 

  52. M. Gan, H. Peng, X.P. Dong, Appl. Math. Model. 36, 2911–2919 (2012)

    Google Scholar 

  53. A. H. Gandomi, A. H. Alavi, Computational Optimization and Applications in Engineering and Industry (Springer, Berlin, 2011), pp. 221–243

    Google Scholar 

  54. W. Liu, J. Dong, P. Zhang, Z. Yao, C. Zhai, W. Ding, J. Mater. Sci. 44, 2916–2924 (2009)

    CAS  Google Scholar 

  55. B. Nasiri-Tabrizi, J. Adv. Ceram. 3, 31–42 (2014)

    CAS  Google Scholar 

  56. E. Sturcken, J. Nucl. Mater. 82, 39–53 (1979)

    CAS  Google Scholar 

  57. Y. Cheong, F. Yam, Y. Ooi, Z. Hassan, Mater. Sci. Semicond. Process. 26, 130–136 (2014)

    CAS  Google Scholar 

  58. S. Charfeddine, K. Zehani, L. Besais, A. Korchef, IOP Conference Series: Materials Science and Engineering (IOP Publishing), 012003

  59. G. Williamson, W. Hall, Acta Metall. 1, 22–31 (1953)

    CAS  Google Scholar 

  60. F. Sun, F.S. Froes, J. Alloy. Compd. 340, 220–225 (2002)

    CAS  Google Scholar 

  61. H. Badran, I. Yahia, M.S. Hamdy, N. Awwad, Radiat. Phys. Chem. 130, 85–91 (2017)

    CAS  Google Scholar 

  62. S. Bera, S.G. Chowdhury, Y. Estrin, I. Manna, J. Alloy. Compd. 548, 257–265 (2013)

    CAS  Google Scholar 

  63. T. Ungár, J. Gubicza, G. Ribárik, A. Borbély, J. Appl. Crystallogr. 34, 298–310 (2001)

    Google Scholar 

  64. J. Gubicza, L. Balogh, R. Hellmig, Y. Estrin, T. Ungár, Mater. Sci. Eng., A 400, 334–338 (2005)

    Google Scholar 

  65. V. Tavakkoli, M. Afrasiab, G. Faraji, M. Mashhadi, Mater. Sci. Eng., A 625, 50–55 (2015)

    CAS  Google Scholar 

  66. M. Mesbah, G. Faraji, A. Bushroa, Mater. Sci. Eng., A 590, 289–294 (2014)

    CAS  Google Scholar 

  67. A. Fata, G. Faraji, M. Mashhadi, V. Tavakkoli, Arch. Metall. Mater. 62, 159–166 (2017)

    CAS  Google Scholar 

  68. J. Tan, M. Tan, Mater. Sci. Eng., A 339, 124–132 (2003)

    Google Scholar 

  69. G. Faraji, M. Mashhadi, H. Kim, Mater. Sci. Eng., A 528, 4312–4317 (2011)

    Google Scholar 

  70. A. Fata, G. Faraji, M. Mashhadi, H. Abdolvand, Trans. Indian Inst. Met. 70, 1369–1376 (2017)

    CAS  Google Scholar 

  71. A. Vinogradov, J. Mater. Res. 32, 4362–4374 (2017)

    CAS  Google Scholar 

  72. A. Vinogradov, D. Orlov, Y. Estrin, Scripta Mater. 67, 209–212 (2012)

    CAS  Google Scholar 

  73. M. Shahzad, L. Wagner, Engineering Against Fracture, (Springer, Place PUblished, 2009), pp. 249–257

  74. M. Shahzad, D. Eliezer, W.M. Gan, S.B. Yi, L. Wagner, Materi. Sci. Forum 561, 187–190 (2007)

    Google Scholar 

  75. J. Müller, M. Janeček, S. Yi, J. Čížek, L. Wagner, Int. J. Mater. Res. 100, 838–842 (2009)

    Google Scholar 

  76. F. Nový, M. Janeček, V. Škorík, J. Müller, L. Wagner, Int. J. Mater. Res. 100, 288–291 (2009)

    Google Scholar 

  77. Y. Fouad, M. Mhaede, L. Wagner, Fatigue Fract. Eng. Mater. Struct. 34, 403–407 (2011)

    CAS  Google Scholar 

  78. D. Orlov, G. Raab, T.T. Lamark, M. Popov, Y. Estrin, Acta Mater. 59, 375–385 (2011)

    CAS  Google Scholar 

  79. X.-M. Feng, T.-T. Ai, Trans. Nonferr. Metals Soc. China 19, 293–298 (2009)

    CAS  Google Scholar 

  80. M. Phaniraj, M. Prasad, A. Chokshi, Mater. Sci. Eng., A 463, 231–237 (2007)

    Google Scholar 

  81. S. Amani, G. Faraji, Int. J. Miner. Metall. Mater. 25, 672–681 (2018)

    CAS  Google Scholar 

  82. S. Amani, G. Faraji, Met. Mater. Int. 25, 1341–1359 (2019)

    CAS  Google Scholar 

  83. S. Amani, G. Faraji, H. Kazemi-Mehrabadi, M. Baghani, Proc. Inst. Mech. Eng. B: J. Eng. Manuf. 233, 1196–1205 (2019)

    CAS  Google Scholar 

  84. G. Faraji, H. Kim, H.T. Kashi, Severe Plastic Deformation: Methods, Processing and Properties. (2018)

  85. G. Faraji, H. Kim, Mater. Sci. Technol. 33, 905–923 (2017)

    CAS  Google Scholar 

  86. A. Salandari-Rabori, A. Zarei-Hanzaki, S. Fatemi, M. Ghambari, M. Moghaddam, J. Alloy. Compd. 693, 406–413 (2017)

    CAS  Google Scholar 

  87. G.N. Smith, Probability and Statistics in Civil Engineering: An Introduction (Collins, London, 1986)

    Google Scholar 

  88. A. Golbraikh, A. Tropsha, J. Mol. Graph. Model. 20, 269–276 (2002)

    CAS  Google Scholar 

  89. P.P. Roy, K. Roy, QSAR Comb. Sci. 27, 302–313 (2008)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the University of Malaya (UM) and the Ministry of Higher Education, Malaysia (MOHE) for providing necessary resources and facilities for this study. This project was funded with UM Grant Number: RP03A-15AET, and partly supported with FP039-2018A from MOHE.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Mesbah or A. R. Bushroa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mesbah, M., Fattahi, A., Bushroa, A.R. et al. Experimental and Modelling Study of Ultra-Fine Grained ZK60 Magnesium Alloy with Simultaneously Improved Strength and Ductility Processed by Parallel Tubular Channel Angular Pressing. Met. Mater. Int. 27, 277–297 (2021). https://doi.org/10.1007/s12540-019-00495-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00495-w

Keywords

Navigation