Skip to main content
Log in

Investigation on Microstructure, Hardness and Wear Resistance of Electron Beam Wire-Feeding Deposited Inconel 718 Alloy Coatings

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The Inconel 718 (IN718) alloy coatings were successfully fabricated using electron beam wire-feeding deposition technology. The macrostructure, microstructure and elemental analysis of the deposited coatings were characterized by OM, SEM and EDS. Moreover, the hardness and wear resistance were also investigated experimentally. The results showed that the cross section of the deposited coatings can be divided into three different regions: clad zone (CZ), fusion zone (FZ) and heat affected zone. Equiaxed dendrites appeared in the CZ while columnar dendrites occurred in the FZ, and discrete fine Laves phase particles were formed under low beam current while continuous coarse Laves phase particles were found under high beam current. The EDS results showed that the degree of Nb segregation in FZ is higher than that in CZ. More importantly, the microstructure coarsened and the degree of Nb segregation increased with the increase of beam current. The deposited coating under the lowest beam current (10 mA) has the highest hardness (263 HV0.2) and the minimum specific wear rate (3.95391 × 10−15 m3/Nm), which is corresponding to the fine microstructure, discrete Laves phase particles and low degree of Nb segregation under low beam current.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.A. Zaeem, A.J. Clarke, Rapid solidification and phase transformations in additive manufactured materials. JOM 68(3), 928–929 (2016)

    Google Scholar 

  2. K. Eimann, M. Drach, K. Wissenbach, A. Gasser, Proceedings of Stuttgarter Lasertage, Stuttgart, Germany (2003)

  3. A. Gasser, K. Wissenbach, R. Poprawe, Massgeschneiderte Oberflachen durch Laserstrahl-Oberflachenbehandlung mit Zusatzwerkstoffen-eine Ubersicht. Laser und Optoelektron 29(3), 66–75 (1997)

    Google Scholar 

  4. X. Zhang, W. Li, X. Chen, W. Cui, F. Liou, Evaluation of component repair using direct metal deposition from scanned data. Int. J. Adv. Manuf. Technol. 95(9–12), 3335–3348 (2018)

    Google Scholar 

  5. Y. Li, S. Dong, P. He, S. Yan, E. Li, X. Liu, B. Xu, Microstructure characteristics and mechanical properties of new-type FeNiCr laser cladding alloy coating on nodular cast iron. J. Mater. Process. Technol. 269, 163–171 (2019)

    CAS  Google Scholar 

  6. J. Shi, S.Q. Bai, Research on gear repairing technology by laser cladding. Key Eng. Mater. 546, 40–44 (2013)

    Google Scholar 

  7. D. Bartkowski, A. Młynarczak, A. Piasecki, B. Dudziak, M. Gościański, A. Bartkowska, Microstructure, microhardness and corrosion resistance of Stellite-6 coatings reinforced with WC particles using laser cladding. Opt. Laser Technol. 68, 191–201 (2015)

    CAS  Google Scholar 

  8. D. Verdi, M.A. Garrido, C.J. Múnez, P. Poza, Mechanical properties of Inconel 625 laser cladded coatings: depth sensing indentation analysis. Mater. Sci. Eng. A 598, 15–21 (2014)

    CAS  Google Scholar 

  9. Z. Zhang, P. Farahmand, R. Kovacevic, Laser cladding of 420 stainless steel with molybdenum on mild steel A36 by a high power direct diode laser. Mater. Des. 109, 686–699 (2016)

    CAS  Google Scholar 

  10. S.H. Mok, G. Bi, J. Folkes, I. Pashby, Deposition of Ti–6Al–4V using a high power diode laser and wire, part I: investigation on the process characteristics. Surf. Coat. Technol. 202(16), 3933–3939 (2008)

    CAS  Google Scholar 

  11. I.R. Pashby, S.H. Mok, J. Folkes, 23rd International Congress on Applications of Lasers and Electro-optics, San Francisco, USA (2004), p. 18

  12. C. Ader, M. Brosemer, C. Freyer, H. Fricke, D. Hennings, F. Klocke, V. Kühne, W. Meiners, C. Over, H. Pleteit, S. Stührmann, I. Wirth, T. Wirtz, K. Wissenbach, Solid Freeform Fabrication Symposium, Austin, TX, USA (2004), p. 26

  13. H.B. Suo, Z.Y. Chen, J.R. Liu, S.L. Gong, J.Z. Xiao, Microstructure and mechanical properties of Ti–6Al–4V by electron beam rapid manufacturing. Rare Met. Mater. Eng. 43(4), 780–785 (2014)

    CAS  Google Scholar 

  14. J. Gocke, J. Beuth, K. Taminger, Integrated control of solidification microstructure and melt pool dimensions in electron beam wire feed additive manufacturing of Ti–6Al–4V. Addit. Manuf. 1, 119–126 (2014)

    Google Scholar 

  15. R.W. Bush, C.A. Brice, Elevated temperature characterization of electron beam freeform fabricated Ti–6Al–4V and dispersion strengthened Ti–8Al–1Er. Mater. Sci. Eng. A 554, 12–21 (2012)

    CAS  Google Scholar 

  16. K. Taminger, R.A. Hafley, Electron beam freeform fabrication: a rapid metal deposition process, in Proceedings of the 3rd Annual Automotive Composites Conference (Society of Plastics Engineers, Troy, 2003)

  17. K.M. Taminger, R.A. Hafley, Electron Beam Freeform Fabrication (EBF3) for Cost Effective Near-Net Shape Manufacturing. NASA Technical Memorandum TM-2006-214284

  18. C. Körner, Additive manufacturing of metallic components by selective electron beam melting—a review. Int. Mater. Rev. 61(5), 361–377 (2016)

    Google Scholar 

  19. M. Anderson, R. Patwa, Y.C. Shin, Laser-assisted machining of Inconel 718 with an economic analysis. Int. J. Mach. Tool Manuf. 46(14), 1879–1891 (2006)

    Google Scholar 

  20. K.H. Song, K. Nakata, Microstructural and mechanical properties of friction-stir-welded and post-heat-treated Inconel 718 alloy. J. Alloys Compd. 505(1), 144–150 (2010)

    CAS  Google Scholar 

  21. Q. Jia, D. Gu, Selective laser melting additive manufactured Inconel 718 superalloy parts: high-temperature oxidation property and its mechanisms. Opt. Laser Technol. 62, 161–171 (2014)

    CAS  Google Scholar 

  22. M.M. Kirka, K.A. Unocic, N. Raghavan, F. Medina, R.R. Dehoff, S.S. Babu, Microstructure development in electron beam-melted Inconel 718 and associated tensile properties. JOM 68(3), 1012–1020 (2016)

    CAS  Google Scholar 

  23. S. Sui, H. Tan, J. Chen, C. Zhong, Z. Li, W. Fan, A. Gasser, W. Huang, The influence of Laves phases on the room temperature tensile properties of Inconel 718 fabricated by powder feeding laser additive manufacturing. Acta Mater. 164, 413–427 (2018)

    Google Scholar 

  24. R.K. Bird, J. Hibberd, Tensile Properties and Microstructure of Inconel 718 Fabricated with Electron Beam Freeform Fabrication (EBF3). NASA Technical Memorandum TM-2009-215929

  25. Z. Qiu, P. Zhang, D. Wei, B. Duan, P. Zhou, Tribological behavior of CrCoNiAlTiY coating synthesized by double-glow plasma surface alloying technique. Tribol. Int. 92, 512–518 (2015)

    CAS  Google Scholar 

  26. Y. Zhang, J. Huang, P. Nie, H. Liu, Z. Li, Y. Wu, An investigation on high power diode laser cladding of Ni–Fe–Cr based alloy coatings. Rare Met. Mater. Eng. 41, 199–202 (2012)

    Google Scholar 

  27. P.K. Farayibi, T.E. Abioye, A.T. Clare, A parametric study on laser cladding of Ti–6Al–4V wire and WC/W2C powder. Int. J. Adv. Manuf. Technol. 87(9–12), 3349–3358 (2016)

    Google Scholar 

  28. A. Mohammad, A. Alahmari, M. Mohammed, R. Renganayagalu, K. Moiduddin, Effect of energy input on microstructure and mechanical properties of titanium aluminide alloy fabricated by the additive manufacturing process of electron beam melting. Materials 10(2), 211 (2017)

    Google Scholar 

  29. Z.G. Gao, O.A. Ojo, Modeling analysis of hybrid laser-arc welding of single-crystal nickel-base superalloys. Acta Mater. 60(6–7), 3153–3167 (2012)

    CAS  Google Scholar 

  30. K. Moussaoui, W. Rubio, M. Mousseigne, T. Sultan, F. Rezai, Effects of selective laser melting additive manufacturing parameters of Inconel 718 on porosity, microstructure and mechanical properties. Mater. Sci. Eng. A 735, 182–190 (2018)

    CAS  Google Scholar 

  31. P. Nie, O.A. Ojo, Z. Li, Numerical modeling of microstructure evolution during laser additive manufacturing of a nickel-based superalloy. Acta Mater. 77, 85–95 (2014)

    CAS  Google Scholar 

  32. C.W. White, M.J. Aziz, Energy deposition, heat flow, and rapid solidification during laser and electron beam irradiation of materials, in Surface Alloying by Ion, Electron, and Laser Beams (American Society for Metals, Metals Park, 1986), pp. 19–50

  33. H. Qi, M. Azer, A. Ritter, Studies of standard heat treatment effects on microstructure and mechanical properties of laser net shape manufactured INCONEL 718. Metall. Mater. Trans. A 40(10), 2410–2422 (2009)

    Google Scholar 

  34. Y.C. Zhang, Z.G. Li, P.L. Nie, Y.X. Wu, Effect of heat treatment on niobium segregation of laser-cladded IN718 alloy coating. Metall. Mater. Trans. A 44(2), 708–716 (2013)

    CAS  Google Scholar 

  35. K.D. Ramkumar, R.J. Sai, V.S. Reddy, S. Gundla, T.H. Mohan, V. Saxena, N. Arivazhagan, Effect of filler wires and direct ageing on the microstructure and mechanical properties in the multi-pass welding of Inconel 718. J. Manuf. Process. 18, 23–45 (2015)

    Google Scholar 

  36. J. Lambarri, J. Leunda, V.G. Navas, C. Soriano, C. Sanz, Microstructural and tensile characterization of Inconel 718 laser coatings for aeronautic components. Opt. Lasers Eng. 51(7), 813–821 (2013)

    Google Scholar 

  37. Y.T. Long, P.L. Nie, Z.G. Li, J. Huang, L.I. Xiang, X.M. Xu, Segregation of niobium in laser cladding Inconel 718 superalloy. Trans. Nonferr. Met. Soc. China 26(2), 431–436 (2016)

    CAS  Google Scholar 

  38. T. Antonsson, H. Fredriksson, The effect of cooling rate on the solidification of Inconel 718. Metall. Mater. Trans. B 36(1), 85–96 (2005)

    Google Scholar 

  39. S.G.K. Manikandan, D. Sivakumar, K.P. Rao, M. Kamaraj, Effect of weld cooling rate on Laves phase formation in Inconel 718 fusion zone. J. Mater. Process. Technol. 214(2), 358–364 (2014)

    CAS  Google Scholar 

  40. H. Xiao, S.M. Li, W.J. Xiao, Y.Q. Li, L.M. Cha, J. Mazumder, L.J. Song, Effects of laser modes on Nb segregation and Laves phase formation during laser additive manufacturing of nickel-based superalloy. Mater. Lett. 188, 260–262 (2016)

    Google Scholar 

  41. Y. Zhang, L. Yang, J. Dai, J. Liu, W. Zhang, H. Chen, Z. Wang, K. Shi, Microstructure and mechanical properties of pulsed laser cladded IN718 alloy coating. Surf. Eng. 34(4), 259–266 (2018)

    CAS  Google Scholar 

  42. C. Cai, B. Song, C.L. Qiu, L.F. Li, P.J. Xue, Q.S. Wei, J.X. Zhou, H. Nan, H.X. Chen, Y.S. Shi, Hot isostatic pressing of in situ TiB/Ti–6Al–4V composites with novel reinforcement architecture, enhanced hardness and elevated tribological properties. J. Alloys Compd. 710, 364–374 (2017)

    CAS  Google Scholar 

  43. J.B. Cheng, X.B. Liang, Z.H. Wang, B.S. Xu, Dry sliding friction and wear properties of metallic glass coating and martensite stainless coating. Tribol. Int. 60, 140–146 (2013)

    CAS  Google Scholar 

  44. H. Yang, Y. Liu, T. Zhang, H. Wang, B. Tang, J. Qiao, Dry sliding tribological properties of a dendrite-reinforced Zr-based bulk metallic glass matrix composite. J. Mater. Sci. Technol. 30(6), 576–583 (2014)

    CAS  Google Scholar 

  45. P.K. Farayibi, Laser Cladding of Ti–6Al–4V with Carbide and Boride Reinforcements Using Wire and Powder Feedstock, PhD thesis (University of Nottingham, Nottingham, 2014)

  46. L.L. Guo, L. Qin, F.Y. Kong, H. Yi, B. Tang, Improving tribological properties of Ti–5Zr–3Sn–5Mo–15Nb alloy by double glow plasma surface alloying. Appl. Surf. Sci. 388, 203–211 (2016)

    CAS  Google Scholar 

  47. X.W. Tao, Z.J. Yao, X.X. Luo, Comparison of tribological and corrosion behaviors of Cp Ti coated with the TiO2/graphite coating and nitrided TiO2/graphite coating. J. Alloys Compd. 718, 126–133 (2017)

    CAS  Google Scholar 

  48. S. Bruschi, R. Bertolini, A. Ghiotti, Coupling machining and heat treatment to enhance the wear behaviour of an additive manufactured Ti6Al4V titanium alloy. Tribol. Int. 116, 58–68 (2017)

    CAS  Google Scholar 

  49. F.H. Stott, J. Glascott, G.C. Wood, The sliding wear of commercial Fe–12% Cr alloys at high temperature. Wear 101(4), 311–324 (1985)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Opening Fund Project (Grant No. kfjj20180610) of Postgraduate Innovation Laboratory of Nanjing University of Aeronautics and Astronautics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengjun Yao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, D., Wang, H., Tao, X. et al. Investigation on Microstructure, Hardness and Wear Resistance of Electron Beam Wire-Feeding Deposited Inconel 718 Alloy Coatings. Met. Mater. Int. 27, 1263–1272 (2021). https://doi.org/10.1007/s12540-019-00494-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00494-x

Keywords

Navigation