Skip to main content
Log in

Resistance to Pit Formation and Pit Growth for Different Tempers of AA2024 Aluminium Alloy in Presence of Benzotriazole

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The paper analyses the corrosion behaviour of both naturally and artificially aged AA2024 aluminium alloy in NaCl solution in the presence of the corrosion inhibitor benzotriazole (BTA). The differences between these two aging tempers in terms of resistance to general corrosion are explained as well as the differences in terms of pit formation and pit growth. Based on the values of the polarisation resistance and the corrosion current density, the general corrosion resistance of the alloy is determined in the absence and in the presence of BTA. The resistance to pit formation and pit growth is determined on the basis of the polarisation measurements results. Scanning electron microscopy confirmed the expected differences in the appearance and size of the pits formed in naturally aged and artificially aged alloy. In the presence of the corrosion inhibitor BTA, for both aging tempers of the alloy, the corrosion resistance is significantly higher compared to the resistance in the solution without the inhibitor. The value of the polarisation resistance for both aging tempers increases over time. However, at the same time, the value of the constant phase element increases as well. An explanation for this phenomenon is provided. The calculated average value of the thickness of the adsorbed inhibitor layer on the surface of the aluminium alloy is in accordance with the inhibitor protective ability for both aging tempers.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.E. Hatch, Aluminum Properties and Physical Metallurgy (ASM International, Ohio, 1984), pp. 351–378

    Google Scholar 

  2. J.R. Davis, Corrosion of Aluminum and Aluminum Alloys (ASM International, Ohio, 1999), pp. 25–43

    Google Scholar 

  3. V.S. Sinjavskij, V.D. Valjkov, V.D. Kalinin, Corrosion and Protection of Aluminium alloys (Metallurgia, Moskva, 1986), pp. 226–37. (in Russian)

    Google Scholar 

  4. P.G. Fox, G. Lowis, P.J. Boden, Corros. Sci. 19, 457 (1979)

    CAS  Google Scholar 

  5. M. Finšgar, I. Milošev, Corros. Sci. 52, 2737 (2010)

    Google Scholar 

  6. M.L. Zheludkevich, K.A. Yasakau, S.K. Poznyak, M.G.S. Ferreira, Corros. Sci. 47, 3368 (2005)

    CAS  Google Scholar 

  7. G. Williams, A.J. Coleman, H.N. McMurray, Electrochim. Acta 55, 5947 (2010)

    CAS  Google Scholar 

  8. I. Recloux, F. Andreatta, M.-E. Druart, L.B. Coelho, C. Cepek, D. Cossement, L. Fedrizzi, M.-G. Olivier, J. Alloys Compd. 735, 2512 (2018)

    CAS  Google Scholar 

  9. V. Palanivel, Y. Huang, W.J. van Ooij, Prog. Org. Coat. 53, 153 (2005)

    CAS  Google Scholar 

  10. I. Recloux, M. Mouanga, M.-E. Druart, Y. Paint, M.-G. Olivier, Appl. Surf. Sci. 346, 124 (2015)

    CAS  Google Scholar 

  11. Y. Feng, Y.F. Cheng, Chem. Eng. J. 315, 537 (2017)

    CAS  Google Scholar 

  12. K. Kamburova, N. Boshkova, N. Boshkov, T. Radeva, Colloids Surf. A Physicochem. Eng. Asp. 499, 24 (2016)

    CAS  Google Scholar 

  13. N. Birbilis, R.G. Buchheit, J. Electrochem. Soc. 152, B140 (2005)

    CAS  Google Scholar 

  14. C. Luo, Role of Microstructure on Corrosion Control of AA2024-T3 Aluminium Alloy University of Manchester (Faculty of Engineering and Physical Sciences, Manchester, 2011), pp. 59–76

    Google Scholar 

  15. A. Conde, J. De Damborenea, Corros. Sci. 39, 295 (1997)

    CAS  Google Scholar 

  16. V. Guillaumin, G. Mankowski, Corros. Sci. 41, 421 (1999)

    CAS  Google Scholar 

  17. K.S. Ghosh, M. Hilal, S. Bose, Trans. Nonferrous Met. Soc. China 23, 3215 (2013)

    CAS  Google Scholar 

  18. K.D. Ralston, N. Birbilis, M.K. Cavanaugh, M. Weyland, B.C. Muddle, R.K.W. Marceau, Electrochim. Acta 55, 7834 (2010)

    CAS  Google Scholar 

  19. M.B. Jensen, A. Guerard, D.E. Tallman, G.P. Bierwagen, J. Electrochem. Soc. 155, C324 (2008)

    CAS  Google Scholar 

  20. L. Lacroix, L. Ressier, C. Blanc, G. Mankowski, J. Electrochem. Soc. 155, C131 (2008)

    CAS  Google Scholar 

  21. N. Birbilis, R.G. Buchheit, J. Electrochem. Soc. 155, C117 (2008)

    CAS  Google Scholar 

  22. Y. Yoon, R.G. Buchheit, J. Electrochem. Soc. 153, B151 (2006)

    CAS  Google Scholar 

  23. G.O. Ilevbare, O. Schneider, R.G. Kelly, J.R. Scully, J. Electrochem. Soc. 151, C453 (2004)

    Google Scholar 

  24. O. Schneider, G.O. Ilevbare, J.R. Scully, R.G. Kelly, J. Electrochem. Soc. 151, C465 (2004)

    Google Scholar 

  25. M.K. Cavanaugh, J.C. Li, N. Birbilis, R.G. Buchheit, J. Electrochem. Soc. 161, C535 (2014)

    Google Scholar 

  26. Y.F. Qin, S.Q. Wang, J. Electrochem. Soc. 162, C503 (2015)

    CAS  Google Scholar 

  27. T. Suter, R.C. Alkire, J. Electrochem. Soc. 148, B36 (2001)

    CAS  Google Scholar 

  28. M.O. Speidel, M.V. Hyatt, in Advances in Corrosion Science and Technology, vol. 2, ed. by M.G. Fontana, R.W. Staehle (Plenum Press, New York, 1972), p. 115

    Google Scholar 

  29. B.V. Jegdić, J.B. Bajat, J.P. Popić, S.I. Stevanović, V.B. Mišković-Stanković, Corros. Sci. 53, 2872 (2011)

    Google Scholar 

  30. B.V. Jegdić, L.S. Živković, J.P. Popić, J. Rogan, J.B. Bajat, V.B. Mišković-Stanković, Mater. Corros. 67, 1173 (2016)

    Google Scholar 

  31. L.S. Živković, J.P. Popić, B.V. Jegdić, Z. Dohčević-Mitrović, J.B. Bajat, V.B. Mišković-Stanković, Surf. Coat. Technol. 240, 327 (2014)

    Google Scholar 

  32. S.S. Kim, W.J. Lee, S.I. Pyun, D.R. Kim, Met. Mater. 5, 583 (1999)

    CAS  Google Scholar 

  33. T. Radetić, M. Popović, B. Jegdić, E. Romhanji, Mater. Corros. 67, 867 (2016)

    Google Scholar 

  34. A. Boag, A.E. Hughes, N.C. Wilson, A. Torpy, C.M. MacRae, A.M. Glenn, T.H. Muster, Corros. Sci. 51, 1565 (2009)

    CAS  Google Scholar 

  35. I. Recloux, F. Andreatta, M.-E. Druart, L.B. Coelho, C. Cepek, D. Cossement, L. Fedrizzi, M.-G. Olivier, J. Alloys Compd. 735, 2512 (2018)

    CAS  Google Scholar 

  36. P. Rodič, I. Milošev, J. Electrochem. Soc. 163, C85 (2016)

    Google Scholar 

  37. E. McCafferty, Introduction to Corrosion Science (Springer, New York, 2010), pp. 263–313

    Google Scholar 

  38. F. Mansfeld, J.C.S. Fernandes, Corros. Sci. 34, 2105 (1993)

    CAS  Google Scholar 

  39. H. Shih, F. Mansfeld, Corrosion 45, 610 (1989)

    CAS  Google Scholar 

  40. X. Wang, J. Wang, C. Fu, Trans. Nonferrous Met. Soc. China 24, 3907 (2014)

    CAS  Google Scholar 

  41. G.S. Frankel, in Active Protective Coatings, New-Generation Coatings for Metals, Springer Series in Materials Science, vol. 233, ed. by A.E. Hughes, J.M.C. Mol, M.L. Zheludkevich, R.G. Buchheit (Springer, Dordrecht, 2016), pp. 17–32

    Google Scholar 

  42. B. Jegdić, B. Bobić, B. Gligorijević, V. Mišković-Stanković, Mater. Protect. 55, 387 (2014)

    Google Scholar 

  43. F. Mansfeld, in Advances in Corrosion Science and Technology, vol. 6, ed. by M.G. Fontana, R.W. Staehle (Plenum Press, New York, 1976), p. 163

    Google Scholar 

  44. J.R. Galvele, S.M. de DeMicheli, Corros. Sci. 10, 795 (1970)

    CAS  Google Scholar 

  45. G.O. Ilevbare, J.R. Scully, Corrosion 57, 134 (2001)

    CAS  Google Scholar 

  46. F.E. Heakal, S. Haruyama, Corros. Sci. 20, 887 (1980)

    Google Scholar 

  47. R. Babić, M. Metikoš-Huković, M. Lončar, Electrochim. Acta 44, 2413 (1999)

    Google Scholar 

  48. L.B. Coelho, M. Mouanga, M.E. Druart, I. Recloux, D. Cossement, M.G. Olivier, Corros. Sci. 110, 143 (2016)

    CAS  Google Scholar 

  49. L.B. Coelho, D. Cossement, M.G. Olivier, Corros. Sci. 130, 177 (2018)

    CAS  Google Scholar 

  50. F. Batmanghelich, M.B. Hariri, S. Sharifi-Asl, Y. Yaghoubinezhad, G. Mortazavi, Y. Seo, Met. Mater. Int. 22, 609 (2016)

    CAS  Google Scholar 

  51. Y.S. Kim, S.H. Kim, J.G. Kim, Met. Mater. Int. 21, 1013 (2015)

    CAS  Google Scholar 

Download references

Acknowledgements

The Ministry of Education, Science and Technological Development of the Republic of Serbia has supported this work financially through TR 34028, TR 35021 and TR 34002 Projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bore Jegdić.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jegdić, B., Bobić, B., Stevanović, M. et al. Resistance to Pit Formation and Pit Growth for Different Tempers of AA2024 Aluminium Alloy in Presence of Benzotriazole. Met. Mater. Int. 26, 1643–1653 (2020). https://doi.org/10.1007/s12540-019-00451-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00451-8

Keywords

Navigation