Skip to main content
Log in

Measurement and Theoretical Calculation Confirm the Improvement of T7651 Aging State Influenced Precipitation Characteristics on Fatigue Crack Propagation Resistance in an Al–Zn–Mg–Cu Alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Precipitation characteristics influencing fatigue crack propagation contained matrix precipitate, grain boundary precipitate and precipitate free zone for Al–Zn–Mg–Cu alloys. Over-aging treatment could effectively regulate precipitation and then to be able to change fatigue crack propagation behavior compared with the peak aging state. In the current work, typical T651 and T7651 aging tempers of the alloy were extracted via hardness, electrical conductivity and mechanical properties under one-step and two-step aging treatments. Fatigue crack propagation (FCP) rate under them was tested and corresponding precipitation characteristics and fracture morphology were observed. The results indicated that fatigue crack propagation resistance for the T7651 temper possessed an obvious improvement on the side of that for the T651 temper, which was also supported by fracture appearance, including tearing ridge, tearing dimple and fatigue striation. The precipitation observation showed that the T651 alloy contained GPI zone, GPII zone and ηʹ phase while the T7651 alloy possessed ηʹ phase and η phase. Compared with the T651 temper, matrix precipitate for the T7651 temper distinctly owed an expanding of size distribution and an enlargement of average size while cuttable phase still remained the dominance for both tempers. Grain boundary precipitate and precipitate free zone manifested no obvious difference between the two aging tempers. Cut and bypass mechanisms of dislocation–precipitate interactions were used for explanation and it revealed the reinforced cuttable phase was in favor of enhancing fatigue crack propagation resistance. A theoretical model which directly correlated FCP rate with matrix precipitate characteristics was employed to calculate FCP rate by substituting quantitative precipitate characteristics and the calculation results were vaguely consistent with the experimental measurement, which proved its reliability and feasibility.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. T. Dursun, C. Soutis, Mater. Des. 56, 862 (2014)

    CAS  Google Scholar 

  2. T. Marlaud, A. Deschamps, F. Bley, W. Lefebvre, B. Baroux, Acta Mater. 58, 248 (2010)

    CAS  Google Scholar 

  3. A.C.U. Rao, V. Vasu, M. Govindaraju, K. Srinadh, T. Nonferr, Metal Soc. 26, 1447 (2016)

    CAS  Google Scholar 

  4. P.A. Rometsch, Y. Zhang, S. Knight, T. Nonferr, Metal Soc. 24, 2003 (2014)

    CAS  Google Scholar 

  5. M. Kamal, M.M. Rahman, Renew. Sust. Energ. Rev. 82, 940 (2018)

    Google Scholar 

  6. U. Krupp, Fatigue Crack Propagation in Metals and Alloys (Wiley, Germany, 2007), p. 117

    Google Scholar 

  7. D. Yin, H. Liu, Y. Chen, D. Yi, B. Wang, B. Wang, F. Shen, S. Fu, C. Tang, S. Pan, Int. J. Fatigue 84, 9 (2016)

    CAS  Google Scholar 

  8. P. De, R. Mishra, C. Smith, Scr. Mater. 60, 500 (2009)

    CAS  Google Scholar 

  9. P.S. De, R.S. Mishra, Mater. Sci. Eng. A 527, 7719 (2010)

    Google Scholar 

  10. V.K. Gupta, S.R. Agnew, Int. J. Fatigue 33, 1159 (2011)

    CAS  Google Scholar 

  11. L. Wei, Q. Pan, H. Huang, L. Feng, Y. Wang, Int. J. Fatigue 66, 55 (2014)

    CAS  Google Scholar 

  12. P. Xia, Z. Liu, S. Bai, L. Lu, L. Gao, Mater. Charact. 118, 438 (2016)

    CAS  Google Scholar 

  13. M.N. Desmukh, R.K. Pandey, A.K. Mukhopadhyay, Mater. Sci. Eng. A 435, 318 (2006)

    Google Scholar 

  14. L. Lin, Z. Liu, W. Liu, Y. Zhou, T. Huang, J. Mater. Sci. Technol. 34, 534 (2018)

    Google Scholar 

  15. M. Goto, S.Z. Han, S.H. Lim, J. Kitamura, T. Fujimura, J.H. Ahn, T. Yamamoto, S. Kim, J. Lee, Int. J. Fatigue 87, 15 (2016)

    CAS  Google Scholar 

  16. R. Yang, Z. Liu, P. Ying, J. Li, L. Lin, S. Zeng, T. Nonfer. Metal Soc. 26, 1183 (2016)

    CAS  Google Scholar 

  17. Y.L. Wang, Q.L. Pan, L.L. Wei, B. Li, Y. Wang, Mater. Des. 55, 857 (2014)

    CAS  Google Scholar 

  18. S.K. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman, D.L. Chen, Mater. Sci. Eng. A 657, 441 (2016)

    CAS  Google Scholar 

  19. C. Watanabe, R. Monzen, K. Tazaki, Int. J. Fatigue 30, 635 (2008)

    CAS  Google Scholar 

  20. K. Hockauf, M.F.X. Wagner, T. Halle, T. Niendorf, M. Hockauf, T. Lampke, Acta Mater. 80, 250 (2014)

    CAS  Google Scholar 

  21. F. Iacoviello, V.D. Cocco, S. Natali, A. Brotzu, Int. J. Fatigue 115, 27 (2018)

    CAS  Google Scholar 

  22. R. Jones, R.K.S. Raman, A.J. McMillan, Eng. Fract. Mech. 187, 190 (2018)

    Google Scholar 

  23. S. Suresh, A.K. Vasudevan, P.E. Bretz, Metall. Mater. Trans. A 15, 369 (1984)

    Google Scholar 

  24. J. Lindigkeit, A. Gysler, G. Lütjering, Metall. Mater. Trans. A 12, 1613 (1981)

    CAS  Google Scholar 

  25. S. Zhou, L. Wang, L. Xie, L. Hui, L. Xu, T. Nonfer. Metal Soc. 26, 938 (2016)

    CAS  Google Scholar 

  26. J.T. Burns, V.K. Gupta, S.R. Agnew, R.P. Gangloff, Int. J. Fatigue 55, 268 (2013)

    CAS  Google Scholar 

  27. A. Deschamps, G. Fribourg, Y. Bréchet, J.L. Chemin, C.R. Hutchinson, Acta Mater. 60, 1905 (2012)

    CAS  Google Scholar 

  28. K. Wen, Y. Fan, G. Wang, L. Jin, X. Li, Z. Li, Y. Zhang, B. Xiong, Mater. Des. 101, 16 (2016)

    CAS  Google Scholar 

  29. Y.C. Lin, J. Zhang, M. Chen, J. Alloy. Compd. 684, 177 (2016)

    CAS  Google Scholar 

  30. Y. Liu, S. Liang, D. Jiang, J. Alloy. Compd. 689, 632 (2016)

    CAS  Google Scholar 

  31. Y. Zhang, D. Pelliccia, B. Milkereit, N. Kirby, M.J. Starink, P.A. Rometsch, Mater. Des. 142, 259 (2018)

    CAS  Google Scholar 

  32. K. Wen, B. Xiong, Y. Zhang, Z. Li, X. Li, S. Huang, L. Yan, H. Yan, H. Liu, Mater. Sci. Eng. A 716, 42 (2018)

    CAS  Google Scholar 

  33. S. Lynch, Int. J. Fatigue 104, 12 (2017)

    CAS  Google Scholar 

  34. G. Sha, A. Cerezo, Acta Mater. 52, 4503 (2004)

    CAS  Google Scholar 

  35. L.K. Berg, J. Gjønnes, V. Hansen, X.Z. Li, M. Knutson-Wedel, G. Waterloo, D. Schryvers, L.R. Wallenberg, Acta Mater. 49, 3443 (2001)

    CAS  Google Scholar 

  36. X.Z. Li, V. Hansen, J. GjØnnes, L.R. Wallenberg, Acta Mater. 47, 2651 (1999)

    CAS  Google Scholar 

  37. E. Hornbogen, K.H.Z. Gahr, Acta Metall. 24, 581 (1976)

    CAS  Google Scholar 

  38. T.A. Perkins, T.J. Kronenberger, J.T. Roth, J. Manuf. Sci. Eng. 129, 84 (2007)

    Google Scholar 

  39. S.T. Hong, Y.H. Jeong, M.N. Chowdhury, D.M. Chun, M.J. Kim, H.N. Han, CIRP Ann Manuf Technol. 64, 277 (2015)

    Google Scholar 

  40. J.G. Kaufman, Introduction to Aluminum Alloys and Tempers (ASM international, USA, 2000), p. 237

    Google Scholar 

  41. P. Dai, X. Luo, Y. Yang, Z. Kou, B. Huang, C. Wang, J. Zang, J. Ru, Mater. Sci. Eng. A 729, 411 (2018)

    CAS  Google Scholar 

  42. G.E. Pellissier, S.M. Purdy, Stereology and Quantitative Metallography (Addison-Wesley Publishing Company, USA, 1972), p. 112

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key R&D Program of China (Nos. 2016YFB0300803, 2016YFB0300903) and the Youth Fund of GRIMAT Engineering Institute Co., LTD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Wen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, K., Xiong, B., Zhang, Y. et al. Measurement and Theoretical Calculation Confirm the Improvement of T7651 Aging State Influenced Precipitation Characteristics on Fatigue Crack Propagation Resistance in an Al–Zn–Mg–Cu Alloy. Met. Mater. Int. 27, 779–795 (2021). https://doi.org/10.1007/s12540-019-00446-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00446-5

Keywords

Navigation