Skip to main content
Log in

Rheological and Thermal Characterization of AISI 4605 Low-Alloy Steel Feedstock for Metal Injection Molding Process

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this study, rheological and thermal decomposition behavior of AISI 4605 MIM feedstock investigated using capillary and thermogravimetric analysis. For this purpose and in order to find the critical solids loading, the feedstock was prepared by compounding AISI 4605 micro powder (~ 4 µm) with an adopted multi-component wax-based binder system at various powder loadings (53–61 vol%). After preparing the feedstock with optimal solids loading, fundamental rheological characteristics of homogenized feedstock, including flow behavior index (n), flow activation energy (E), and general moldability index (αstv) were studied. Furthermore, thermal analysis of feedstock, including apparent debinding activation energy and master decomposition curve was investigated. The results showed that critical solids loading of feedstock is around 58 vol%. The flow behavior index of developed feedstock was acceptable, since it came out to be less than one. Also, flow activation energy which shows the sensitivity of material to temperature changes, came out to be 70.406 kJ/mol. Using these two parameters, general moldability index was calculated to be 2.3147E−06. Finally, the master decomposition curve of feedstock was constructed based on calculated apparent debinding activation energy and verified using decomposition curves at different heating rates of 2, 5 and 10 °C/min.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R.M. German, A. Bose, Injection Molding of Metals and Ceramics (Princeton, Metal Powder Industries Federation, 1997), pp. 11–53

    Google Scholar 

  2. R.M. German, Powder Metallurgy Science (Princeton, Metal Powder Industries Federation, 1994), pp. 6692–8540

    Google Scholar 

  3. Y.L. Ho, S.T. Lin, Metall. Mater. Trans. A 26, 133 (1995)

    Google Scholar 

  4. A.J. Coleman, K. Murray, M. Kearns, T.A. Tingskog, Processing and properties of 4605 MIM parts manufactured via a master alloy route (The European Powder Metallurgy Association, 2012). https://www.materials.sandvik/globalassets/global/downloads/products_downloads/metal_powders/technical_papers/processing-and-properties-of-mim-aisi-4605-via-master-alloy-routes.pdf. Accessed 13 Mar 2012

  5. S.V. Atre, T.J. Weaver, R.M. German, Injection Molding of Metals and Ceramics (Princeton, Metal Powder Industries Federation, 1998)

    Google Scholar 

  6. W.J. Tseng, Mater. Sci. Eng. A 289, 116 (2000)

    Google Scholar 

  7. M.D. Hayat, G. Wen, M.F. Zulkifli, P. Cao, Powder Technol 270, 296 (2015)

    CAS  Google Scholar 

  8. K.C. Hsu, G.M. Lo, Powder Metall. 39, 286 (1996)

    CAS  Google Scholar 

  9. K.C. Hsu, C.C. Lin, G.M. Lo, Can. Metall. Q. 35, 181 (1996)

    Google Scholar 

  10. G. Aggarwal, S.J. Park, I. Smid, Int. J. Refract. Met. Hard Mater. 24, 253 (2006)

    CAS  Google Scholar 

  11. J.P. Choi, H.G. Lyu, W.S. Lee, J.S. Lee, Powder Technol. 261, 201 (2014)

    CAS  Google Scholar 

  12. M.H.I. Ibrahim, N. Muhamad, A.B. Sulong, Int. J. Mech. Mater. Eng. 4, 1 (2009)

    Google Scholar 

  13. J. Hidalgo, A. Jiménez-Morales, J.M. Torralba, J. Eur. Ceram. Soc. 32, 4063 (2012)

    CAS  Google Scholar 

  14. V.A. Krauss, E.N. Pires, A.N. Klein, M.C. Fredel, Mater. Res. 8, 187 (2005)

    CAS  Google Scholar 

  15. J.W. Oh, W.S. Lee, S.J. Park, Powder Technol. 311, 18 (2017)

    CAS  Google Scholar 

  16. Y. Li, L. Li, K.A. Khalil, J. Mater. Process. Technol. 183, 432 (2007)

    CAS  Google Scholar 

  17. Y. Li, X. Liu, F. Luo, J. Yue, Trans. Nonferrous Met. Soc. China 17, 1 (2007)

    Google Scholar 

  18. S. Md Ani, A. Muchtar, N. Muhamad, J.A. Ghani, Ceram. Int. 40, 2819 (2014)

    CAS  Google Scholar 

  19. D. Tsai, AIChE J. 37, 547 (1991)

    CAS  Google Scholar 

  20. P. Calvert, M. Cima, J. Am. Ceram. Soc. 73, 575 (1990)

    CAS  Google Scholar 

  21. Y.C. Lam, S.C.M. Yu, K.C. Tam, Y. Shengjie, Metall. Mater. Trans. A. 31, 2597 (2000)

    Google Scholar 

  22. M.R. Barone, J.C. Ulicny, J. Am. Ceram. Soc. 73, 3323 (1990)

    CAS  Google Scholar 

  23. S.A. Matar, M.J. Edirisinghe, J.R.G. Evans, E.H. Twizell, J. Mater. Res. 8, 617 (1993)

    CAS  Google Scholar 

  24. S.J. Park, R.M. German, Int. J. Mater. Struct. Integr. 1, 128 (2007)

    Google Scholar 

  25. J.H. Song, J.R.G. Evans, M.J. Edirisinghe, E.H. Twizell, J. Mater. Res. 15, 449 (2000)

    CAS  Google Scholar 

  26. S.-J. Park, Y. Wu, D.F. Heaney, X. Zou, G. Gai, R.M. German, Metall. Mater. Trans. A. 40, 215 (2009)

    Google Scholar 

  27. G. Aggarwal, I. Smid, S.J. Park, R.M. German, Int. J. Refract. Met. Hard Mater. 25, 226 (2007)

    CAS  Google Scholar 

  28. S.V. Atre, R.K. Enneti, S.J. Park, R.M. German, Powder Metall. 51, 368 (2008)

    CAS  Google Scholar 

  29. J.W. Oh, W.S. Lee, S.J. Park, Int. J. Adv. Manuf. Technol. 97, 4115 (2018)

    Google Scholar 

  30. J. Man, J. Sae, C. Woo, J. Won, J. Hyun, K.H. Kate, S.V. Atre, Y. Kim, S. Jin, Ceram. Int. 44, 12709 (2018)

    Google Scholar 

  31. D. Seul, J. Won, H. Jun, S. Jin, J. Alloys Compd. 749, 758 (2018)

    Google Scholar 

  32. R.H. Christopher, S. Middleman, Ind. Eng. Chem. Fundam. 4, 422 (1965)

    CAS  Google Scholar 

  33. S. Gabbanelli, G. Drazer, J. Koplik, Phys. Rev. E. 72, 46312 (2005)

    Google Scholar 

  34. X. Huang, B. Liang, S. Qu, J. Mater. Process. Technol. 137(1–3), 132 (2003)

    CAS  Google Scholar 

  35. R.P. Chhabra, J.F. Richardson, Non-Newtonian Flow and Applied Rheology: Engineering Applications (Butterworth-Heinemann, Oxford, 2011)

    Google Scholar 

  36. M.Y. Cao, B.O. Rhee, C.I. Chung, Adv. Powder Metall. 2, 59 (1991)

    CAS  Google Scholar 

  37. S.-L. Li, Y.-M. Li, X.-H. Qu, B.-Y. Huang, Trans. Nonferrous Met. Soc. China. 12, 105 (2002)

    Google Scholar 

  38. H.E. Kissinger, Anal. Chem. 29, 1702 (1957)

    CAS  Google Scholar 

  39. G. Aggarwal, S.-J. Park, I. Smid, R.M. German, Metall. Mater. Trans. A. 38, 606 (2007)

    Google Scholar 

  40. D.M. Bigg, R.G. Barry, Progress in 56th Society of Plastic Engineers–Annual Technical Conference (1998).

  41. M. Khakbiz, A. Simchi, R. Bagheri, Mater. Sci. Eng. A. 407, 105 (2005)

    Google Scholar 

  42. M.E. Sotomayor, A. Várez, B. Levenfeld, Powder Technol. 200, 30 (2010)

    CAS  Google Scholar 

  43. J.M. Park, J.S. Han, C.W. Gal, J.W. Oh, K.H. Kate, S.V. Atre, Y. Kim, S.J. Park, Powder Technol. 330, 19 (2018)

    CAS  Google Scholar 

  44. J.W. Oh, Y. Seong, S.J. Park, J. Mater. Process. Technol. 262, 503 (2018)

    CAS  Google Scholar 

  45. J.W. Oh, J.M. Park, D.S. Shin, J. Noh, S.J. Park, Mater. Manuf. Process., 1 (2018).

  46. R.E. Smallman, R.J. Bishop, Modern physical metallurgy and materials engineering, (Elsevier, UK, 1999), pp. 35–278

    Google Scholar 

  47. H. Abolhasani, N. Muhamad, Int. J. Mech. Mater. Eng. 4, 294 (2009)

    Google Scholar 

  48. Z.Y. Liu, N.H. Loh, S.B. Tor, K.A. Khor, Y. Murakoshi, R. Maeda, Mater. Lett. 48, 31 (2001)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Askari or Mohammad Hossein Alaei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Askari, A., Alaei, M.H., Mehdipoor Omrani, A. et al. Rheological and Thermal Characterization of AISI 4605 Low-Alloy Steel Feedstock for Metal Injection Molding Process. Met. Mater. Int. 26, 1820–1829 (2020). https://doi.org/10.1007/s12540-019-00442-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00442-9

Keywords

Navigation