Skip to main content
Log in

Stacked Auto-Encoder Network to Predict Tensile Deformation Behavior of a Typical Nickel-Based Superalloy Considering Portevin–Le Chatelier Effects

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The intermediate-temperature (473–973 K) deformation behavior of a nickel-based superalloy is researched by uniaxial tensile experiments. It is observed that the flow characteristics and the Portevin–Le Chatelier (PLC) effects are significantly affected by the thermo-mechanical parameters. The serrated flow features are obvious under the testing conditions. A stacked auto-encoders (SAEs) network model is proposed for predicting the flow behaviors of the researched superalloy. The architecture of the established SAEs model is optimized layer by layer. The best number of hidden layer is 3, and the nodes per hidden layer are 15, 20 and 50, respectively. The excellent prediction ability suggests that the developed SAEs model can well reconstruct the intermediate-temperature flow behavior involving the PLC effects of the researched superalloy.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y.C. Lin, F. Wu, Q.W. Wang, D.D. Chen, S.K. Singh, Microstructural evolution of a Ni–Fe–Cr-base superalloy during non-isothermal two-stage hot deformation. Vacuum 151, 283–293 (2018)

    CAS  Google Scholar 

  2. P.H. Geng, G.L. Qin, J. Zhou, Z.D. Zou, Hot deformation behavior and constitutive model of GH4169 superalloy for linear friction welding process. J. Manuf. Process. 32, 469–481 (2018)

    Google Scholar 

  3. D. Liao, S.P. Zhu, Energy field intensity approach for notch fatigue analysis. Int. J. Fatigue 127, 190–202 (2019)

    CAS  Google Scholar 

  4. D. Liao, S.P. Zhu, G. Qian, Multiaxial fatigue analysis of notched components using combined critical plane and critical distance approach. Int. J. Mech. Sci. 160, 38–50 (2019)

    Google Scholar 

  5. F. Chen, J. Liu, H.A. Ou, B. Lu, Z.S. Cui, H. Long, Flow characteristics and intrinsic workability of IN718 superalloy. Mater. Sci. Eng. A 642, 279–287 (2015)

    CAS  Google Scholar 

  6. Y.C. Lin, J. Deng, Y.Q. Jiang, D.X. Wen, G. Liu, Hot tensile deformation behaviors and fracture characteristics of a typical Ni-based superalloy. Mater. Des. 55, 949–957 (2014)

    CAS  Google Scholar 

  7. J. Liu, W.T. Tang, J.H. Li, Deformation and fracture behaviors of K403 Ni-based superalloy at elevated temperatures. J. Alloys Compd. 699, 581–590 (2017)

    CAS  Google Scholar 

  8. X. Zhang, H.W. Li, M. Zhan, Mechanism for the macro and micro behaviors of the Ni-based superalloy during electrically-assisted tension: local Joule heating effect. J. Alloys Compd. 742, 480–489 (2018)

    CAS  Google Scholar 

  9. Y.C. Huang, C. Liu, Z.B. Xiao, Hot tensile deformation and fracture behaviours of Hastelloy C-276 alloy. Mater. Sci. Technol. 34, 620–627 (2018)

    CAS  Google Scholar 

  10. C.Y. Wang, Q.L. An, Q.L. Niu, M. Chen, Strain-rate sensitivity of tensile behaviors for nickel-based superalloys GH3044 and GH4033 at room temperature. Indian J. Eng. Mater. Sci. 23, 336–340 (2016)

    Google Scholar 

  11. Y.C. Lin, H. Yang, Y.C. Xin, C.Z. Li, Effects of initial microstructures on serrated flow features and fracture mechanisms of a nickel-based superalloy. Mater. Charact. 144, 9–21 (2018)

    CAS  Google Scholar 

  12. P. Maj, J. Zdunek, J. Mizera, K.J. Kurzydlowski, B. Sakowicz, M. Kaminski, Microstructure and strain–stress analysis of the dynamic strain aging in Inconel 625 at high temperature. Met. Mater. Int. 23, 54–67 (2017)

    CAS  Google Scholar 

  13. J.H. Kim, Y.S. Na, Tensile properties and serrated flow behavior of as-cast CoCrFeMnNi high-entropy alloy at room and elevated temperatures. Met. Mater. Int. 25, 296–303 (2019)

    CAS  Google Scholar 

  14. A.K. Gupta, H.N. Krishnamurthy, Y. Singh, K.M. Prasad, S.K. Singh, Development of constitutive models for dynamic strain aging regime in austenitic stainless steel 304. Mater. Des. 45, 616–627 (2013)

    CAS  Google Scholar 

  15. A. Garg, B.N. Panda, K. Tai, True stress measurement of nuclear fuel rod cladding material subjected to DSA regime. Neural Comput. Appl. 28, 119–126 (2017)

    Google Scholar 

  16. A. Garg, K. Tai, A.K. Gupta, A modified multi-gene genetic programming approach for modelling true stress of dynamic strain aging regime of austenitic stainless steel 304. Meccanica 49, 1193–1209 (2014)

    Google Scholar 

  17. Y.C. Lin, H. Yang, X.M. Chen, D.D. Chen, Influences of initial microstructures on Portevin–Le Chatelier effect and mechanical properties of a Ni–Fe–Cr-base superalloy. Adv. Eng. Mater. 20, 1800234 (2018)

    Google Scholar 

  18. Z.H. Cai, H. Ding, R.D.K. Misra, Z.Y. Ying, Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content. Acta Mater. 84, 229–236 (2015)

    CAS  Google Scholar 

  19. F. Chmelık, E. Pink, J. Król, J. Balık, J. Pešička, P. Lukáč, Mechanisms of serrated flow in aluminium alloys with precipitates investigated by acoustic emission. Acta Mater. 46, 4435–4442 (1998)

    Google Scholar 

  20. P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.A. Manzagol, Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)

    Google Scholar 

  21. W. Li, M. Xiao, X. Peng, A. Garg, L. Gao, A surrogate thermal modeling and parametric optimization of battery pack with air cooling for EVs. Appl. Therm. Eng. 147, 90–100 (2019)

    Google Scholar 

  22. C. Ruhatiya, S. Singh, A. Goyal, X.D. Niu, T.N.H. Nguyen, V.H. Nguyen, V.M. Tran, M.L.P. Le, A. Garg, L. Gao, Electrochemical performance enhancement of sodium-ion batteries fabricated with NaNi1/3Mn1/3Co1/3O2 cathodes using support vector regression-simplex algorithm approach. J. Electrochem. Energy Convers. Storage (2019). https://doi.org/10.1115/1.4044358

    Article  Google Scholar 

  23. M.F. Buchely, X. Wang, D.C. Van Aken, R.J. O’Malley, S. Lekakh, K. Chandrashekhara, The use of genetic algorithms to calibrate Johnson–Cook strength and failure parameters of AISI/SAE 1018 steel. J. Eng. Mater. Technol. 141, 021012 (2019)

    CAS  Google Scholar 

  24. A. Jenab, I.S. Sarraf, D.E. Green, T. Rahmaan, M.J. Worswick, The use of genetic algorithm and neural network to predict rate-dependent tensile flow behaviour of AA5182-O sheets. Mater. Des. 94, 262–273 (2016)

    CAS  Google Scholar 

  25. Y.C. Lin, F.Q. Nong, X.M. Chen, D.D. Chen, M.S. Chen, Microstructural evolution and constitutive models to predict hot deformation behaviors of a nickel-based superalloy. Vacuum 137, 104–114 (2017)

    CAS  Google Scholar 

  26. M. Rakhshkhorshid, A robust RBF-ANN model to predict the hot deformation flow curves of API X65 pipeline steel. Int. J. Mater. Form. 4, 12–20 (2017)

    Google Scholar 

  27. D.D. Chen, Y.C. Lin, Fan Wu, A design framework for optimizing forming processing parameters based on matrix cellular automaton and neural network-based model predictive control methods. Appl. Math. Model. 76, 918–937 (2019)

    Google Scholar 

  28. G.Z. Quan, W.Q. Lv, Y.P. Mao, Y.W. Zhang, J. Zhou, Prediction of flow stress in a wide temperature range involving phase transformation for as-cast Ti–6Al–2Zr–1Mo–1V alloy by artificial neural network. Mater. Des. 50, 51–61 (2013)

    CAS  Google Scholar 

  29. A. Mirzaei, A. Zarei-Hanzaki, M.H. Pishbin, A. Imandoust, S. Khoddam, Evaluating the hot deformation behavior of a super-austenitic steel through microstructural and neural network analysis. J. Mater. Eng. Perform. 24, 2412–2421 (2015)

    CAS  Google Scholar 

  30. J. Cai, K.S. Wang, Y.Y. Han, A comparative study on Johnson Cook, Modified Zerilli–Armstrong and Arrhenius-type constitutive models to predict high-temperature flow behavior of Ti–6Al–4V alloy in α + β phase. High Temp. Mater. Process. 35, 297–307 (2016)

    CAS  Google Scholar 

  31. Y.C. Lin, D.D. Chen, M.S. Chen, X.M. Chen, J. Li, A precise BP neural network-based online model predictive control strategy for die forging hydraulic press machine. Neural Comput. Appl. 29, 585–596 (2018)

    Google Scholar 

  32. Y.C. Lin, J. Li, M.S. Chen, Y.X. Liu, Y.J. Liang, A deep belief network to predict the hot deformation behavior of a Ni-based superalloy. Neural Comput. Appl. 29, 1015–1023 (2018)

    Google Scholar 

  33. Y.C. Lin, Y.J. Liang, M.S. Chen, X.M. Chen, A comparative study on phenomenon and deep belief network models for hot deformation behavior of an Al–Zn–Mg–Cu alloy. Appl. Phys. A 123, 68 (2017)

    Google Scholar 

  34. D.G. He, Y.C. Lin, J. Chen, D.D. Chen, J. Huang, Y. Tang, M.S. Chen, Microstructural evolution and support vector regression model for an aged Ni-based superalloy during two-stage hot forming with stepped strain rates. Mater. Des. 154, 51–62 (2018)

    CAS  Google Scholar 

  35. G.Z. Quan, Z.H. Zhang, Y.T. Zhou, T. Wang, Y.F. Xia, Numerical description of hot flow behaviors at Ti–6Al–2Zr–1Mo–1V alloy by GA-SVR and relative applications. Mater. Res. 19, 1253–1269 (2016)

    CAS  Google Scholar 

  36. D.D. Chen, Y.C. Lin, A particle swarm optimization-based multi-level processing parameters optimization method for controlling microstructures of an aged superalloy during isothermal forging. Met. Mater. Int. 25, 1246–1257 (2019)

    Google Scholar 

  37. D.D. Chen, Y.C. Lin, X.M. Chen, A strategy to control microstructures of a Ni-based superalloy during hot forging based on particle swarm optimization algorithm. Adv. Manuf. 7, 238–247 (2019)

    Google Scholar 

  38. D.D. Chen, Y.C. Lin, Y. Zhou, M.S. Chen, D.X. Wen, Dislocation substructures evolution and an adaptive-network-based fuzzy inference system model for constitutive behavior of a Ni-based superalloy during hot deformation. J. Alloys Compd. 708, 938–946 (2017)

    CAS  Google Scholar 

  39. H. Vafaeenezhad, S.H. Seyedein, M.R. Aboutalebi, A.R. Eivani, Application of constitutive description and integrated ANFIS–ICA analysis to predict hot deformation behavior of Sn-5Sb lead-free solder alloy. J. Alloys Compd. 697, 287–299 (2017)

    CAS  Google Scholar 

  40. ISO 6892-2: Metallic materials—tensile testing—part 2: method of test at elevated temperature (2011)

  41. Y. Cai, C. Tian, G. Zhang, G. Han, S. Yang, S. Fu, C. Cui, Q. Zhang, Influence of γ′ precipitates on the critical strain and localized deformation of serrated flow in Ni-based superalloys. J. Alloys Compd. 690, 707–715 (2017)

    CAS  Google Scholar 

  42. Y.C. Lin, H. Yang, D.G. He, J. Chen, A physically-based model considering dislocation–solute atom dynamic interactions for a nickel-based superalloy at intermediate temperatures. Mater. Des. (2019). https://doi.org/10.1016/j.matdes.2019.108122

    Article  Google Scholar 

  43. J. Yang, Y. Bai, F. Lin, M. Liu, Z. Hou, X. Liu, A novel electrocardiogram arrhythmia classification method based on stacked sparse auto-encoders and softmax regression. Int. J. Mach. Learn. Cybern. 9, 1733–1740 (2017)

    Google Scholar 

  44. R. Zhao, R. Yan, Z. Chen, K. Mao, P. Wang, R.X. Gao, Deep learning and its applications to machine health monitoring. Mech. Syst. Sig. Process. 115, 213–237 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation Council of China (Grant No. 51775564).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. C. Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y.C., Yang, H., Chen, DD. et al. Stacked Auto-Encoder Network to Predict Tensile Deformation Behavior of a Typical Nickel-Based Superalloy Considering Portevin–Le Chatelier Effects. Met. Mater. Int. 27, 254–261 (2021). https://doi.org/10.1007/s12540-019-00435-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00435-8

Keywords

Navigation