Skip to main content
Log in

Ion Irradiation Enhanced Helium Atoms Re-Solution and the Related Hardening in Hastelloy N Alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Transmission electron microscopy (TEM) and nanoindentation were performed in Hastelloy N alloy with three kinds of irradiation mode: single He ions, He + Xe (3 dpa) ions and He + Xe (10 dpa) ions. TEM results showed the presence of nano-sized irradiation-damage defects, such as helium bubbles, xenon bubbles, dislocation loops and precipitates. It was found that the helium bubble can grow up via absorbing vacancies, and the helium bubble shrinkage will be also occurred due to the helium atoms re-solution. In the case of He + Xe (3 dpa) ions irradiation, the helium bubble growth via absorbing vacancies induced by subsequent Xe ion irradiation was more noticeable. As for the sample irradiated by He + Xe (10 dpa) ions, the ion irradiation enhanced helium atoms re-solution played an important role. Moreover, the helium atoms were more easily dissolved from small helium bubbles and the mechanisms behind them have also been shed light on. In addition, the dispersed barrier hardening and strengthening superposition models were used to predict the nanohardness increments produced by the different irradiation defects. The nanohardness increments measured by nanoindentation for irradiated samples were basically consistent with the calculated nanohardness increments.

Graphic Abstract

Both the ballistic recoil re-solution and the damage assisted re-solution make it easier for helium atoms to dissolve from small helium bubbles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P. Yvon, F. Carré, J. Nucl. Mater. 385, 217–222 (2009)

    Article  CAS  Google Scholar 

  2. A Technology Roadmap for Generation IV Nuclear Energy Systems, GIF-002–00, Issued by the U.S. DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, December 2002.

  3. J. Serp, M. Allibert, O. Benes, S. Delpech, O. Feynberg, V. Ghetta, D. Heuer, D. Holcomb, V. Ignatiev, J.L. Kloosterman, L. Luzzi, E. Merle-Lucotte, J. Uhlir, R. Yoshika, Z.M. Dai, Prog. Nucl. Ener 77, 208–319 (2014)

    Google Scholar 

  4. L.C. Olson, J.W. Ambrosek, K. Sridharan, James W. Ambrosek, Kumar Sridharan, Mark H. Anderson, Todd R. Allen, J. Fluorine. Chem. 130 (2009) 67–73.

  5. H.E. McCoy, B. McNabb, ORNL/TM-4829, TN, USA, 1972, pp. 165–172.

  6. Preliminary Fluoride Salt-Cooled High Temperature Reactor (FHR) Materials and Components White Paper, UCBTH-12–003, August 2012.

  7. W.R. Martin, J.R. Weir, Nucl. Appl. 1, 160–167 (1965)

    CAS  Google Scholar 

  8. H.F. Huang, W. Zhang, M. De Los Reyes, X.L. Zhou, C. Yang, R. Xie, X.T. Zhou, P. Huai, H.J. Xu, Mater. Des. 90, 359–363. (2016)

    Article  Google Scholar 

  9. C.-L. Chen, A. Richter, R. Kögler, J. Alloys Compd. 586, S173–S179 (2014)

    Article  CAS  Google Scholar 

  10. H.F. Huang, J. Gao, B. Radiguet, R.D. Liu, J.J. Li, G.H. Lei, Q. Huang, M. Liu, R.B. Xie, J. Nucl. Mater. 499, 431–439 (2018)

    Article  CAS  Google Scholar 

  11. M. Liu, Y.L. Lu, R.D. Liu, X.T. Zhou, Microsc. Res. Tech. 77, 161–169 (2014)

    Article  CAS  Google Scholar 

  12. H.F. Huang, X.L. Zhou, C.W. Li, J. Gao, T. Wei, G.H. Lei, J.J. Li, L.F. Ye, Q. Huang, Z.Y. Zhu, J. Nucl. Mater. 497, 108–116 (2017)

    Article  CAS  Google Scholar 

  13. J. Gao, L.M. Bao, H.F. Huang, Y. Li, J.R. Zeng, Z. Liu, R.D. Liu, L.Q. Shi, Materials 9, 832–836 (2016)

    Article  Google Scholar 

  14. G.H. Lei, R.B. Xie, H.F. Huang, R.D. Liu, Q. Huang, J.J. Li, Y.Y. Zhou, C. Li, Q.T. Lei, Q. Deng, Y.Q. Wang, C.B. Wang, W. Zhang, L. Yan, M. Tang, J. Alloys Compd. 746, 153–158 (2018)

    Article  CAS  Google Scholar 

  15. G.S. Was, J.T. Busby, T. Allen, E.A. Kenik, A. Jensson, S.M. Bruemmer, J. Gan, A.D. Edwards, P.M. Scott, P.L. Andreson, J. Nucl. Mater. 300, 198–216 (2002)

    Article  CAS  Google Scholar 

  16. C. Heintze, F. Bergner, M. Hernández-Mayoral, J. Nucl. Mater. 417, 980–983 (2011)

    Article  CAS  Google Scholar 

  17. P.P. Liu, F.R. Wan, Q. Zhan, Nucl. Instrum. Methods B 342, 13–18 (2015)

    Article  CAS  Google Scholar 

  18. X.B. Liu, R.S. Wang, A. Ren, J. Jiang, C.L. Xu, P. Huang, W.J. Qian, Y.C. Wu, C.H. Zhang, J. Nucl. Mater. 444, 1–6 (2014)

    Article  Google Scholar 

  19. J.F. Ziegler, J.P. Biersack, U. Littmark, The stopping and range of ions in matter (Pergamon Press, New York, 1985)

    Book  Google Scholar 

  20. R.E. Stoller, M.B. Toloczko, G.S. Was, A.G. Certain, S. Dwaraknath, F.A. Garner, Nucl. Instrum. Methods Phys. B 310, 75–80 (2013)

    Article  CAS  Google Scholar 

  21. W.C. Olivier, G.M. Pharr, J. Mater. Res. 19, 3–20 (2004)

    Article  Google Scholar 

  22. W.C. Olivier, G.M. Pharr, J. Mater. Res. 7, 1564–1583 (1992)

    Article  Google Scholar 

  23. F.F. Han, B.M. Zhou, H.F. Huang, B. Leng, Y.L. Lu, J.S. Dong, Z.J. Li, X.T. Zhou, Mater. Chem. Phys. 182, 22–31 (2016)

    Article  CAS  Google Scholar 

  24. J. Gao, H.F. Huang, J.Z. Liu, Z.B. Zhu, Y. Li, J. Appl. Phys. 125, 055901 (2019)

    Article  Google Scholar 

  25. H. Trinkaus, Scr. Metall. 23, 1773–1778 (1989)

    Article  CAS  Google Scholar 

  26. J. Gao, H.F. Huang, J.Z. Liu, R.D. Liu, Q.T. Lei, Y. Li, J. Appl. Phys. 123, 205901 (2018)

    Article  Google Scholar 

  27. Y.P. Wei, P.P. Liu, Y.M. Zhu, Z.Q. Wang, F.R. Wan, Q. Zhan, J. Alloys Compd. 676, 481–488 (2016)

    Article  CAS  Google Scholar 

  28. D.C. Parfitt, R.W. Grimes, J. Nucl. Mater. 381, 216–222 (2008)

    Article  CAS  Google Scholar 

  29. C. Ronchi, P.T. Elton, J. Nucl. Mater. 140, 228–244 (1986)

    Article  CAS  Google Scholar 

  30. Z. Jiao, G.S. Was, Acta Mater. 59, 1220–1238 (2011)

    Article  CAS  Google Scholar 

  31. W.D. Nix, H. Gao, J. Mech. Phys. Solids 46, 411–425 (1998)

    Article  CAS  Google Scholar 

  32. S.X. Jin, L.P. Guo, Y.Y. Ren, R. Tang, Y.X. Qiao, J. Mater. Sci. Technol. 28(11), 1039–1045 (2012)

    Article  CAS  Google Scholar 

  33. R. Kasada, Y. Takayama, K. Yabuuchi, A. Kimura, Fusion Eng. Des. 86, 2658–2661 (2011)

    Article  CAS  Google Scholar 

  34. B. Radiguet, A. Etienne, P. Pareige, X. Sauvage, R. Valiev, J. Mater. Sci. 43, 7338–7343 (2008)

    Article  CAS  Google Scholar 

  35. Y. Takayama, R. Kasada, Y. Sakamoto, K. Yabuuchi, A. Kimura, M. Ando, D. Hamaguchi, J. Nucl. Mater. 442, S23–S27 (2013)

    Article  CAS  Google Scholar 

  36. X.B. Liu, R.S. Wang, A. Rei, J. Jiang, C.L. Xu, P. Huang, W.J. Qian, Y.C. Wu, C.H. Zhang, J. Nucl. Mater. 444, 1–6 (2014)

    Article  Google Scholar 

  37. G.E. Lucas, J. Nucl. Mater. 206, 287–305 (1993)

    Article  CAS  Google Scholar 

  38. A.J.E. Foreman, M.J. Makin, Can. J. Phys. 45, 511–517 (1967)

    Article  CAS  Google Scholar 

  39. G.R. Odette, G.E. Lucas, Radiat Eff. Defects Solids 144, 189–231 (1998)

    Article  CAS  Google Scholar 

  40. Y. Katoh, M. Ando, A. Kohyama, J. Nucl. Mater. 323, 251–262 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11605271 and 91126012), and the Youth Innovation Promotion Association, Chinese Academy of Sciences (Grant No. 2016239).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hefei Huang or Yan Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Huang, H., Liu, R. et al. Ion Irradiation Enhanced Helium Atoms Re-Solution and the Related Hardening in Hastelloy N Alloy. Met. Mater. Int. 27, 365–375 (2021). https://doi.org/10.1007/s12540-019-00427-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00427-8

Keywords

Navigation