Skip to main content
Log in

Effect of Annealing on the Microstructure, Texture and Tensile Deformation Properties of Cu–3 wt%Ag–0.5 wt%Zr Thin Sheets Rolled at Room and Cryogenic Temperature

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The Cu–3 wt%Ag–0.5 wt%Zr are rolled with the same reduction process at room (RT) and cryogenic (CT) temperature, respectively. The electron backscatter diffraction and transmission electron microscope are used to analyze and compare the evolutions of material microstructure and texture. The results show that the stability of as-rolled CT sheets is different from that of the RT samples, which can be verified by the lower temperature for the occurrence of recrystallization and Ag-base particles precipitation. Besides the Brass, Copper and S textures which are exhibited in the two kinds of as-rolled sheets, there are also Q and P texture components in the as-rolled CT sheets. The constitutive equation basing on evolution of dislocation mean free path (L) and dislocation cell size (dDC) with plastic strain indicates that the initial values of L, dDC and mobile dislocation density (ρm) are associated with annealing condition closely. Furthermore, the strain ranges of the stable and instable plastic deformation are related to the degree of recovery and recrystallization.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Vinogradov, Y. Estrin, Analytical and numerical approaches to modelling severe plastic deformation. Prog. Mater. Sci. 95, 172–242 (2018)

    Article  Google Scholar 

  2. G. Faraji, H.S. Kim, H.T. Kashi, Severe Plastic Deformation Methods, Processing and Properties (Elsevier, Amsterdam, 2018). https://doi.org/10.1016/C2016-0-05256-7

    Book  Google Scholar 

  3. L. Lapeire, J. Sidor, P. Verleysen, K. Verbeken, I. De Graeve, H. Terryn, L.A.I. Kestens, Texture comparison between room temperature rolled and cryogenically rolled pure copper. Acta Mater. 95, 224–235 (2015)

    Article  CAS  Google Scholar 

  4. T. Konkova, S. Mironov, A. Korznikov, M.M. Myshlyaev, S.L. Semiatin, Annealing behavior of cryogenically-rolled copper. Mat. Sci. Eng. A. 585, 178–189 (2013)

    Article  CAS  Google Scholar 

  5. Y. Lu, R. Ma, Y.N. Wang, Texture evolution and recrystallization behaviors of Cu–Ag alloys subjected to cryogenic rolling. Trans. Nonferrous Met. Soc. China 25, 2948–2957 (2015)

    Article  CAS  Google Scholar 

  6. T. Konkova, S. Mironov, A. Korznikov, S.L. Semiatin, Microstructure instability in cryogenically deformed copper. Scr. Mater. 63, 921–924 (2010)

    Article  CAS  Google Scholar 

  7. C. Saldana, A.H. King, S. Chandrasekar, Thermal stability and strength of deformation microstructures. Acta Mater. 60, 4107–4116 (2012)

    Article  CAS  Google Scholar 

  8. D.A. Hughes, N. Hansen, The microstructural origin of work hardening stages. Acta Mater. 148, 374–383 (2018)

    Article  CAS  Google Scholar 

  9. M.N. Bassim, C.D. Liu, Dislocation cell structures in copper in torsion and tension. Mater. Sci. Eng. A 164, 170–174 (1993)

    Article  Google Scholar 

  10. E.I. Galindo-Nava, P.E.J. Rivera-Díaz-del-Castillo, A thermodynamic theory for dislocation cell formation and misorientation in metals. Acta Mater. 60, 4370–4378 (2012)

    Article  CAS  Google Scholar 

  11. G. Chen, J.Z. Shen, Q. Zhu, S.J. Yao, C.J. Wang, P. Zhang, Tensile deformation and fracture behaviours of cold rolled Cu–3wt.%Ag–0.5wt.%Zr thin sheets with different annealed microstructures. Mater. Sci. Eng. A 756, 27–34 (2019)

    Article  CAS  Google Scholar 

  12. P.S. Chen, J.H. Sanders, Y.K. Liaw et al., Ductility degradation of vacuum-plasma-sprayed NARloy-Z at elevated temperatures. Mater. Sci. Eng. A 199(2), 145–152 (1995)

    Article  Google Scholar 

  13. C. Verdy, IpséLERMPS. Phd thesis, Belfort, France, 1998, 279 pp

  14. N. Hansen, X. Huang, D.A. Hughes, Microstructural evolution and hardening parameters. Mater. Sci. Eng. A 317, 3–11 (2001)

    Article  Google Scholar 

  15. T.B. Yu, N. Hansen, X.X. Huang, Linking recovery and recrystallization through triple junction motion in aluminum cold rolled to a large strain. Acta Mater. 61, 6577–6586 (2013)

    Article  CAS  Google Scholar 

  16. D.K. Wilsdorf, N. Hansen, Geometrically necessary, incidental and subgrain boundaries. Scr. Metall. Mater. 25, 1557–1562 (1991)

    Article  Google Scholar 

  17. R.G. Li, S.J. Zhang, H.J. Kang, Z.N. Chen, F.F. Yang, W. Wang, C.L. Zou, T.J. Li, T.M. Wang, Microstructure and texture evolution in the cryorolled CuZr alloy. J. Alloys. Compd. 693, 592–600 (2017)

    Article  CAS  Google Scholar 

  18. T. Konkova, S. Mironov, A. Korznikov, S.L. Semiatin, Microstructural response of pure copper to cryogenic rolling. Acta Mater. 58, 5262–5273 (2010)

    Article  CAS  Google Scholar 

  19. Q.Q. Shao, L.H. Liu, T.W. Fan, D.W. Yuan, J.H. Chen, Effects of solute concentration on the stacking fault energy in copper alloys at finite temperatures. J. Alloys. Compd. 726, 601–607 (2017)

    Article  CAS  Google Scholar 

  20. B.B. Zhang, N.R. Tao, K. Lu, A high strength and high electrical conductivity bulk Cu–Ag alloy strengthened with nanotwins. Scr. Mater. 129, 39–43 (2017)

    Article  CAS  Google Scholar 

  21. T. Konkova, S. Mironova, A. Korznikov, G. Korznikova, M.M. Myshlyaev, S.L. Semiatin, An EBSD investigation of cryogenically-rolled Cu–30%Zn Brass. Mater. Charact. 101, 173–179 (2015)

    Article  CAS  Google Scholar 

  22. K.S. Raju, V.S. Sarma, A. Kauffmann, Z. Hegedűs, J. Gubicza, M. Peterlechner, J. Freudenberger, G. Wilde, High strength and ductile ultrafine-grained Cu–Ag alloy through bimodal grain size, dislocation density and solute distribution. Acta Mater. 61(1), 228–238 (2013)

    Article  Google Scholar 

  23. Z.P. Luo, H.W. Zhang, N. Hansen, K. Lu, Quantification of the microstructures of high purity nickel subjected to dynamic plastic deformation. Acta Mater. 60, 1322–1333 (2012)

    Article  CAS  Google Scholar 

  24. P. Landau, R.Z. Shneck, G. Makov, A. Venkert, Microstructure evolution in deformed copper. J. Mater. Sci. 42, 9775–9782 (2007)

    Article  CAS  Google Scholar 

  25. P. Landau, G. Makov, R.Z. Shneck, A. Venkert, Universal strain–temperature dependence of dislocation structure evolution in face-centered-cubic metals. Acta Mater. 59, 5342–5350 (2011)

    Article  CAS  Google Scholar 

  26. J. Gan, J.S. Vetrano, M.A. Khaleel, Microstructure characterization of dislocation wall structure in aluminum using transmission electron microscopy. J. Mater. Sci. Technol. 124, 297–301 (2002)

    Article  CAS  Google Scholar 

  27. C.Y. Yu, P.W. Kao, C.P. Chang, Transition of tensile deformation behaviors in ultrafine-grained aluminum. Acta Mater. 53, 4019–4028 (2005)

    Article  CAS  Google Scholar 

  28. W. Piyawit, W.Z. Xu, S.N. Mathaudhu, J. Freudenberger, J.M. Rigsbee, Y.T. Zhu, Nucleation and growth mechanism of Ag precipitates in a CuAgZr alloy. Mater. Sci. Eng. A 610, 85–90 (2014)

    Article  CAS  Google Scholar 

  29. S. Shao, J. Wang, A. Misra, Energy minimization mechanisms of semi-coherent interfaces. J. Appl. Phys. 116, 023508(1–10) (2014)

    Google Scholar 

  30. J.B. Liu, M.L. Hou, H.Y. Yang, H.B. Xie, C. Yang, J.D. Zhang, Q. Feng, L.T. Wang, L. Meng, H.T. Wang, In-situ TEM study of the dynamic interactions between dislocations and precipitates in a Cu–Cr–Zr alloy. J. Alloys. Compd. 765, 560–568 (2018)

    Article  CAS  Google Scholar 

  31. H.D. Fu, S. Xu, W. Li, J.X. Xie, H.B. Zhao, Z.J. Pan, Effect of rolling and aging processes on microstructure and properties of Cu–Cr–Zr alloy. Mater. Sci. Eng. A 700, 107–115 (2017)

    Article  CAS  Google Scholar 

  32. J. Gubicza, Z. Hegedűs, J.L. Lábár, A. Kauffmann, J. Freudenberger, V.S. Sarma, Solute redistribution during annealing of a cold rolled Cu–Ag alloy. J. Alloys. Compd. 623, 96–103 (2015)

    Article  CAS  Google Scholar 

  33. B.B. Straumal, A.R. Kilmametov, A. Korneva, A.A. Mazilkin, P.B. Straumal, P. Zieba, B. Baretzky, Phase transitions in Cu-based alloys under high pressure torsion. J. Alloys. Compd. 707, 20–26 (2017)

    Article  CAS  Google Scholar 

  34. U.F. Kocks, H. Mecking, Physics and phenomenology of strain hardening: the FCC case. Prog. Mater Sci. 48, 171–273 (2003)

    Article  CAS  Google Scholar 

  35. R. Verier, Dislocation mean free path in copper at 77 K. Scr. Metall. 12, 69–73 (1978)

    Article  Google Scholar 

  36. B. Devincre, T. Hoc, L. Kubin, Dislocation mean free paths and strain hardening of crystals. Science 320, 1745–1748 (2008)

    Article  CAS  Google Scholar 

  37. C. Keller, E. Hug, Kocks–Mecking analysis of the size effects on the mechanical behavior of nickel polycrystals. Int. J. Plasticity 98, 106–122 (2017)

    Article  CAS  Google Scholar 

  38. A.W. Thompson, M.I. Baskes, W.F. Flanagan, The dependence of polycrystal work hardening on grain size. Acta Metall. 21, 1017–1028 (1973)

    Article  CAS  Google Scholar 

  39. A. Molinari, G. Ravichandran, Constitutive modeling of high-strain-rate deformation in metals based on the evolution of an effective microstructural length. Mech. Mater. 37, 737–752 (2005)

    Article  Google Scholar 

  40. D. Kuhlmann-Wilsdorf, Theory of plastic deformation: properties of low energy dislocation structures. Mater. Sci. Eng. A 113, 1–41 (1989)

    Article  Google Scholar 

  41. L.P. Kubin, Y. Estrin, Evolution of dislocation densities and the critical conditions for the portevin-le châtelier effect. Acta Metall. Mater. 38, 697–708 (1990)

    Article  CAS  Google Scholar 

  42. N.Q. Chinh, T. Csanádi, J. Gubicza, T.G. Langdon, Plastic behavior of face-centered-cubic metals over a wide range of strain. Acta Mater. 58, 5015–5021 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the China Postdoctoral Science Foundation (No. 2017T100238) and Research and Development Plan in Shandong Province-Civil military integration of science and technology (No. 2016JMRH0107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Wang, H., Yao, S. et al. Effect of Annealing on the Microstructure, Texture and Tensile Deformation Properties of Cu–3 wt%Ag–0.5 wt%Zr Thin Sheets Rolled at Room and Cryogenic Temperature. Met. Mater. Int. 27, 392–402 (2021). https://doi.org/10.1007/s12540-019-00426-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00426-9

Keywords

Navigation