Structure and Electrochemical Properties of Laser Cladding Al2CoCrCuFeNiTix High-Entropy Alloy Coatings

Abstract

Al2CoxCrCuFeNiTi high-entropy alloy coatings were prepared on Q235 steel by laser cladding. The structure was tested by scanning electron microscopy; the corrosion resistances of the alloys were tested by electrochemical workstation. The results show that the microstructures of Ti2.0 high entropy alloy are mainly equiaxed grains, spherical particles, white particles and "plum blossom" particles are distributed on it, columnar grains are located near the bonding zone. The corrosion resistance of Al2CoCrCuFeNiTix high-entropy alloy coatings in 1 mol/L NaOH and 0.5 mol/L HCl solutions are excellent. In 1 mol/L NaOH solution, compared with Q235 steel, the corrosion current density of the coating decrease by 5 orders of magnitude, the corrosion potential increased by 0.03–0.34 V. In 0.5 mol/L HCl solution, compared with Q235 steel, the corrosion current density of the coating decreases, the corrosion potential increased by 0.06–0.14 V. With the increase of Ti content, the corrosion resistance of Al2CoCrCuFeNiTix high-entropy alloy coating in 0.5 mol/L HCl solution is enhanced, while, in 1 mol/L NaOH solution, the corrosion resistance of the coatings decreased. Cyclic polarization curves showed that negative hysteresis loops appeared in Ti0.5 high-entropy alloy coating in 1 mol/L NaOH solution and Ti2.0 high-entropy alloy coating in 0.5 mol/L HCl solution, which indicated that the coatings has excellent pitting corrosion resistance.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    H. Torres, S. Slawik, C. Gachot, B. Prakash, M.R. Ripoll, Surf. Coat. Technol. 337, 24 (2018)

    CAS  Article  Google Scholar 

  2. 2.

    X.R. Feng, X.F. Cui, G. Jin, W. Zheng, Z.B. Cai, X. Wen, B.W. Lu, J.M. Liu, Surf. Coat. Technol. 333, 104 (2018)

    CAS  Article  Google Scholar 

  3. 3.

    S.J. Sun, Y.Z. Tian, H.R. Lin, X.G. Dong, Z.F. Zhang, Mater. Des. 133, 122 (2017)

    CAS  Article  Google Scholar 

  4. 4.

    C.Y. Shang, E. Axinte, J. Sun, X.T. Li, P. Li, J.W. Du, P.C. Qiao, Y. Wang, Mater. Des. 117, 193 (2017)

    CAS  Article  Google Scholar 

  5. 5.

    G.A. Salishchev, M.A. Tikhonovsky, D.G. Shaysultanov, N.D. Stepanov, A.V. Kuznetsov, I.V. Kolodiy, A.S. Tortika, O.N. Senkov, J. Alloys Compd. 591, 11 (2014)

    CAS  Article  Google Scholar 

  6. 6.

    D.B. Miracle, O.N. Senkov, Acta Mater. 122, 488 (2016)

    Google Scholar 

  7. 7.

    Y.Z. Lu, G.K. Huang, Y.Z. Wang, H.G. Li, Z.X. Qin, X. Lu, Mater. Lett. 210, 46 (2018)

    CAS  Article  Google Scholar 

  8. 8.

    D. Choudhuri, B. Gwalani, S. Gorsse, C.V. Mikler, R.V. Ramanujan, M.A. Gibson, R. Banerjee, Scr. Mater. 127, 186 (2017)

    CAS  Article  Google Scholar 

  9. 9.

    K.K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, J.M. Schoenung, Acta Mater. 61, 141 (2014)

    Article  Google Scholar 

  10. 10.

    M. Beyramali Kivy, M. Asle Zaeem, S. Lekakh, Mater. Des. 127, 224 (2017)

    CAS  Article  Google Scholar 

  11. 11.

    Y.P. Lu, H. Jiang, S. Guo, T.M. Wang, Z.Q. Cao, T.J. Li, Intermetallics 91, 124 (2017)

    CAS  Article  Google Scholar 

  12. 12.

    Y. Zhang, High-Entropy Materials (Springer, Berlin, 2019)

    Google Scholar 

  13. 13.

    L. Liu, J.B. Zhu, C. Zhang, J.C. Li, Q. Jiang, Mat. Sci. Eng. A Struct. 548, 64 (2012)

    Article  Google Scholar 

  14. 14.

    Z.M. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534, 227 (2016)

    CAS  Article  Google Scholar 

  15. 15.

    Y.L. Chou, J.W. Yeh, H.C. Shih, J. Electrochem. Soc. 158, C246 (2011)

    CAS  Article  Google Scholar 

  16. 16.

    B. Wu, Z.Y. Xie, J.C. Huang, J.W. Lin, Y.X. Yang, L.Q. Jiang, J.L. Huang, G.X. Ye, C.F. Zhao, S.J. Yang, B.S. Sa, Intermetallics 93, 40 (2018)

    CAS  Article  Google Scholar 

  17. 17.

    Y.Z. Shi, B. Yang, X. Xie, J. Brechtl, K.A. Dahmen, P.K. Liaw, Corros. Sci. 119, 33 (2017)

    CAS  Article  Google Scholar 

  18. 18.

    B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345, 1153 (2014)

    CAS  Article  Google Scholar 

  19. 19.

    D. Liu, J.B. Cheng, H. Ling, Mater. Sci. Technol. 31, 1159 (2015)

    CAS  Article  Google Scholar 

  20. 20.

    J.B. Cheng, X.B. Liang, Z.H. Wang, B.S. Xu, Plasma Chem. Plasma Proc. 33, 979 (2013)

    CAS  Article  Google Scholar 

  21. 21.

    X.W. Qiu, Y.P. Zhang, L. He, C.G. Liu, J. Alloy. Compd. 549, 195 (2013)

    CAS  Article  Google Scholar 

  22. 22.

    J.B. Cheng, D. Liu, X.B. Liang, B.S. Xu, Acta Metall. Sin. 27, 1031 (2014)

    CAS  Article  Google Scholar 

  23. 23.

    P.Y. Zhang, C. Wang, M.Y. Xie, Y.Q. Li, Z.B. An, Infrared Laser Eng. 46, 906003 (2017)

    Article  Google Scholar 

  24. 24.

    C.L. Wang, Y. Gao, R. Wang, D.Q. Wei, M. Cai, Y.K. Fu, J. Alloy. Compd. 740, 1099 (2018)

    CAS  Article  Google Scholar 

  25. 25.

    V. Kukshal, A. Patnaik, I.K. Bhat, Mater. Today Proc. 5, 17073 (2018)

    CAS  Article  Google Scholar 

  26. 26.

    Y. Tian, C.Y. Lu, Y. Shen, X.M. Feng, Surf. Interfaces 15, 135 (2019)

    CAS  Article  Google Scholar 

  27. 27.

    Y.Q. Jiang, J. Li, Y.F. Juan, Z.J. Lu, W.L. Jia, J. Alloys Compd. 775, 1 (2019)

    CAS  Article  Google Scholar 

  28. 28.

    X.W. Qiu, J. Alloys Compd. 735, 359 (2018)

    CAS  Article  Google Scholar 

  29. 29.

    X.W. Qiu, M.J. Wu, C.G. Liu, Y.P. Zhang, C.X. Huang, Results Phys. 12, 1737 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Project of Deyang Science and Technology Bureau (2018SZY120), Sichuan Province, China, and the Project of Sichuan College of Architecture Technology (2019KJ01).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xingwu Qiu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qiu, X. Structure and Electrochemical Properties of Laser Cladding Al2CoCrCuFeNiTix High-Entropy Alloy Coatings. Met. Mater. Int. 26, 998–1003 (2020). https://doi.org/10.1007/s12540-019-00411-2

Download citation

Keywords

  • High-entropy alloys
  • Laser cladding
  • Structure
  • Corrosion resistance