Skip to main content
Log in

Serrated Behaviors and Plasticity of Nb-Alloyed Cu-Based Bulk Metallic Glasses

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This paper is to disclose the plastic deformation mechanism of 3 Nb-alloyed bulk metallic glasses and composites via the analysis of serration dynamics. The as-cast alloys with 1.0 at% and 2.0 at% of Nb element display the large time window of serrated events, implying that the serrated behavior can dynamically retain in a long-time scale and thus the alloys are endowed the largest compressive plasticity. The statistic results suggest that the serrated flow of both alloys with 1.0 at% and 2.0 at% Nb element achieves the self-organized critical state. The normal probability plots were utilized to further evaluate serrated dynamics and demonstrate that large deviations from the mean value of stress drops facilitate the self-organized critical state of serrations. This work suggests that large plastic bulk metallic glasses and composites are characterized by non-normal probability of serration statistics during plastic deformation.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.W. Qiao, H.L. Jia, P.K. Liaw, Metallic glass matrix composites. Mater. Sci. Eng. R 100, 1–69 (2016)

    Google Scholar 

  2. W.C. Kim, K.C. Kim, M.Y. Na, S.H. Jeong, W.T. Kim, D.H. Kim, Formation of crystalline phase in the glass matrix of Zr–Co–Al glass-matrix composites and its effect on their mechanical properties. Met. Mater. Int. 23, 1216–1222 (2017)

    CAS  Google Scholar 

  3. B.J. Kim, Y.S. Yun, W.T. Kim, D.H. Kim, Microstructure evolution during solidification of Cu–Zr–Ti alloy forming B2 phase particles embedded in a glassy matrix. Met. Mater. Int. 24, 926–933 (2018)

    CAS  Google Scholar 

  4. T. Burgess, K.J. Laws, M. Ferry, Effect of loading rate on the serrated flow of a bulk metallic glass during nanoindentation. Acta Mater. 56, 4829–4835 (2008)

    CAS  Google Scholar 

  5. X.L. Wu, Y.Z. Guo, Q. Wei, W.H. Wang, Prevalence of shear banding in compression of Zr41Ti14Cu12.5Ni10Be22.5 pillars as small as 150 nm in diameter. Acta Mater. 57, 3562–3571 (2009)

    CAS  Google Scholar 

  6. Y.H. Lee, Y. Kim, Y.C. Kim, J.Y. Kim, J.I. Jang, Assessment of surface-local strains from remnant microindents on a Zr-based metallic glass. Met. Mater. Int. 20, 439–443 (2014)

    CAS  Google Scholar 

  7. R. Maass, J.F. Loffler, Shear-band dynamics in metallic glasses. Adv. Funct. Mater. 25, 2353–2368 (2015)

    CAS  Google Scholar 

  8. M.M. Trexler, N.N. Thadhani, Mechanical properties of bulk metallic glasses. Prog. Mater. Sci. 55, 759–839 (2010)

    CAS  Google Scholar 

  9. B.A. Sun, W.H. Wang, The fracture of bulk metallic glasses. Prog. Mater. Sci. 74, 211–307 (2015)

    CAS  Google Scholar 

  10. P. Thurnheer, F. Haag, J.F. Loffler, Time-resolved measurement of shear-band temperature during serrated flow in a Zr-based metallic glass. Acta Mater. 115, 468–474 (2016)

    CAS  Google Scholar 

  11. Y.L. Xu, B. Shi, Effects of strain and strain rate on the evolution of shear bands for room temperature rolled Pd40Ni40P20 bulk metallic glass. J. Non-Cryst. Solids 485, 74–81 (2018)

    CAS  Google Scholar 

  12. P.H. Cao, K.A. Dahmen, A. Kushima, W.J. Wright, H.S. Park, M.P. Short, S. Yip, Nanomechanics of slip avalanches in amorphous plasticity. J. Mech. Phys. Solids 114, 158–171 (2018)

    CAS  Google Scholar 

  13. Z. Wang, J.W. Qiao, H. Tian, B.A. Sun, B.C. Wang, B.S. Xu, M.W. Chen, Composition mediated serration dynamics in Zr-based bulk metallic glasses. Appl. Phys. Lett. 107, 201902 (2015)

    Google Scholar 

  14. Z.F. Yao, J.C. Qiao, Y. Liu, J.M. Pelletier, Y. Yao, Aspect ratio effects on the serration dynamics of a Zr-based bulk metallic glass. J. Mater. Sci. 52, 138–144 (2017)

    CAS  Google Scholar 

  15. W.L. Ma, Y.L. Xu, B. Shi, J.G. Li, Effect of aspect ratio on the evolution of shear bands in Zr61.7Al8Ni13Cu17Sn0.3 bulk metallic glass. J. Mater. Sci. Technol. 33, 99–104 (2017)

    Google Scholar 

  16. S. Urata, S.F. Li, A multiscale shear-transformation-zone (STZ) model and simulation of plasticity in amorphous solids. Acta Mater. 155, 153–165 (2018)

    CAS  Google Scholar 

  17. W.M. Yang, B.A. Sun, Y.C. Zhao, Q. Li, L. Hou, N. Luo, C.C. Dun, C.L. Zhao, Z.G. Ma, H.S. Liu, B.L. Shen, Non-repeatability of large plasticity for Fe-based bulk metallic glasses. J. Alloys Compd. 676, 209–214 (2016)

    CAS  Google Scholar 

  18. D. Zhou, B.J. Li, S.Y. Zhang, B. Hou, Y.L. Li, Rate-dependent shear banding and fracture behavior in a ductile bulk metallic glass. Mater. Sci. Eng. A 730, 270–279 (2018)

    CAS  Google Scholar 

  19. P.Y. Li, Effects of strain rates on shear band and serrated flow in a bulk metallic glass. J. Non-Cryst. Solids 484, 30–35 (2018)

    CAS  Google Scholar 

  20. A. Das, P. Kagebein, S. Kuchemann, R. Maass, Temperature rise from fracture in a Zr-based metallic glass. Appl. Phys. Lett. 112, 261905 (2018)

    Google Scholar 

  21. A.I. Bazlov, A.Y. Churyumov, M. Buchet, D.V. Louzguine-Luzgin, On temperature rise within the shear bands in bulk metallic glasses. Met. Mater. Int. 24, 481–488 (2018)

    Google Scholar 

  22. Z.D. Sha, L.C. He, S. Xu, Q.X. Pei, Z.S. Liu, Y.W. Zhang, T.J. Wang, Effect of aspect ratio on the mechanical properties of metallic glasses. Scr. Mater. 93, 36–39 (2014)

    CAS  Google Scholar 

  23. H.Y. Song, S. Li, Q. Deng, Coupling effects of thickness and aspect ratio on deformation behavior of Cu50Zr50 metallic glass. Comput. Mater. Sci. 139, 106–114 (2017)

    CAS  Google Scholar 

  24. D.M. Chen, J.F. Sun, J. Shen, Localized heating and serrated plastic flow mechanism in bulk amorphous alloys. Acta Metall. Sin. 41, 196–198 (2005)

    CAS  Google Scholar 

  25. B. Shi, S.Y. Luan, P.P. Jin, Crossover from free propagation to cooperative motions of shear bands and its effect on serrated flow in metallic glass. J. Non-Cryst. Solids 482, 126–131 (2018)

    CAS  Google Scholar 

  26. Z. Wang, J.J. Li, L.W. Ren, Y. Zhang, J.W. Qiao, B.C. Wang, Serration behavior in Zr–Cu–Al glass-forming systems. J. Iron Steel Res. Int. 23, 42–47 (2016)

    Google Scholar 

  27. J.W. Qiao, Z. Wang, Self-organized criticality behavior in bulk metallic glasses. J. Iron Steel Res. Int. 23, 7–13 (2016)

    Google Scholar 

  28. J.L. Ren, C. Chen, G. Wang, N. Mattern, J. Eckert, Dynamics of serrated flow in a bulk metallic glass. AIP Adv. 1, 032158 (2011)

    Google Scholar 

  29. H. Guo, P.F. Yan, Y.B. Wang, J. Tan, Z.F. Zhang, M.L. Sui, E. Ma, Tensile ductility and necking of metallic glass. Nat. Mater. 6, 735–739 (2007)

    CAS  Google Scholar 

  30. H.B. Ke, P. Wen, H.L. Peng, W.H. Wang, A.L. Greer, Homogeneous deformation of metallic glass at room temperature reveals large dilatation. Scr. Mater. 64, 966–969 (2011)

    CAS  Google Scholar 

  31. B. Shi, Y.L. Xu, F.A. Wei, S.Y. Luan, P.P. Jin, Power-law scaling behaviors for shear band intersections in Zr64.13Cu15.75Ni10.12Al10 bulk metallic glass. J. Non-Cryst. Solids 472, 9–13 (2017)

    CAS  Google Scholar 

  32. S.S. Chen, J.J. Wu, J.X. Tu, X.H. Li, J.Z. Zou, Q. Hu, X.R. Zeng, Enhanced plasticity in a Ti–Ni–Nb–Zr shape memory bulk metallic glass composite with high Nb addition. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 704, 192–198 (2017)

    CAS  Google Scholar 

  33. Q. Yu, X.D. Wang, H.B. Lou, Q.P. Cao, J.Z. Jiang, Atomic packing in Fe-based metallic glasses. Acta Mater. 102, 116–124 (2016)

    CAS  Google Scholar 

  34. S.S. Jiang, Y.J. Huang, F.F. Wu, P. Xue, J.F. Sun, A CuZr-based bulk metallic glass composite with excellent mechanical properties by optimizing microstructure. J. Non-Cryst. Solids 483, 94–98 (2018)

    CAS  Google Scholar 

  35. J.L. Wu, Y. Pan, X.Z. Li, X.F. Wang, Microstructure evolution and mechanical properties of Nb-alloyed Cu-based bulk metallic glasses and composites. Mater. Des. 75, 32–39 (2015)

    CAS  Google Scholar 

  36. G. Wang, K.C. Chan, L. Xia, P. Yu, J. Shen, W.H. Wang, Self-organized intermittent plastic flow in bulk metallic glasses. Acta Mater. 57, 6146–6155 (2009)

    CAS  Google Scholar 

  37. B.A. Sun, H.B. Yu, W. Jiao, H.Y. Bai, D.Q. Zhao, W.H. Wang, Plasticity of ductile metallic glasses: a self-organized critical state. Phys. Rev. Lett. 105, 035501 (2010)

    CAS  Google Scholar 

  38. S. Yang, Y.W. Zhang, K.Y. Zeng, Analysis of nanoindentation creep for polymeric materials. J. Appl. Phys. 95, 3655–3666 (2004)

    CAS  Google Scholar 

  39. H.B. Ke, B.A. Sun, C.T. Liu, Y. Yang, Effect of size and base-element on the jerky flow dynamics in metallic glass. Acta Mater. 63, 180–190 (2014)

    CAS  Google Scholar 

  40. Y. Zhang, J.P. Liu, S.Y. Chen, X. Xie, P.K. Liaw, K.A. Dahmen, J.W. Qiao, Y.L. Wang, Serration and noise behaviors in materials. Prog. Mater. Sci. 90, 358–460 (2017)

    CAS  Google Scholar 

  41. H.J. Park, S.H. Hong, H.J. Park, Y.S. Kim, J.T. Kim, Y.S. Na, K.R. Lim, W.M. Wang, K.B. Kim, Development of high strength Ni–Cu–Zr–Ti–Si–Sn in-situ bulk metallic glass composites reinforced by hard B2 phase. Met. Mater. Int. 24, 241–247 (2018)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51601050), Jiangsu Key Laboratory for Advanced Metallic Materials (Grant No. BM2007204), Natural Science Fund for Colleges and Universities in Jiangsu Province (Grant No. 16KJB430005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Peng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1351 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Zhou, Z. & Peng, Z. Serrated Behaviors and Plasticity of Nb-Alloyed Cu-Based Bulk Metallic Glasses. Met. Mater. Int. 26, 1483–1490 (2020). https://doi.org/10.1007/s12540-019-00405-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00405-0

Keywords

Navigation