Skip to main content
Log in

Grain Boundaries and Phases Identification of Metallographic Images by a Normalized Sobel Operation and the Edge Thinning Process for Further Numerical Simulation

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The recognitions of phases and precise grain boundaries based on metallographic images are useful for conducting micromechanical simulations, such as finite element analysis and peridynamics. In this work, those processes are automatized by using a Sobel operator for identifying edges, which is normalized by different proposed Gaussian filters (on intensity, rugosity, or both). After that, a threshold is used to discretize the edges. Different neighboring pixel configurations, sensitive to edge intensity, are proposed for thinning and cleaning the discretized edges, and hence, grain boundaries with a one-pixel thickness are obtained. Then, the phase is selected by averaging color of each delimited grain. Finally, the precision on the phase recognition was found to increase from 75.61 to 83.6% for the unmodified and the normalized Sobel operator, respectively.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. I. Alvarez-Armas, S. Degallaix-Moreuil, Duplex Stainless Steels (Wiley, New York, 2009)

    Google Scholar 

  2. I. Varol, J.C. Lippold, W.A. Baeslack, Welding of duplex stainless steels. Key Eng. Mater. 69–70, 217–252 (1992). https://doi.org/10.4028/www.scientific.net/KEM.69-70.217

    Article  Google Scholar 

  3. V. Muthupandi, P.B. Srinivasan, S.K. Seshadri, S. Sundaresan, Mater. Sci. Eng., A 358, 9–16 (2003). https://doi.org/10.1016/S0921-5093(03)00077-7

    Article  CAS  Google Scholar 

  4. I.N. Bastos, S.S.M. Tavares, F. Dalard, R.P. Nogueira, Scr. Mater. 57, 913–916 (2007). https://doi.org/10.1016/j.scriptamat.2007.07.037

    Article  CAS  Google Scholar 

  5. V.S. Moura, L.D. Lima, J.M. Pardal, A.Y. Kina, R.R.A. Corte, S.S.M. Tavares, Mater. Charact. 59, 1127–1132 (2008). https://doi.org/10.1016/j.matchar.2007.09.002

    Article  CAS  Google Scholar 

  6. J. Olsson, M. Snis, Desalination 205, 104–113 (2007). https://doi.org/10.1016/j.desal.2006.02.051

    Article  CAS  Google Scholar 

  7. H.-Y. Liou, R.-I. Hsieh, W.-T. Tsai, Mater. Chem. Phys. 74, 33–42 (2002). https://doi.org/10.1016/S0254-0584(01)00409-6

    Article  CAS  Google Scholar 

  8. H. Tan, Z. Wang, Y. Jiang, Y. Yang, B. Deng, H. Song, J. Li, Corros. Sci. 55, 368–377 (2012). https://doi.org/10.1016/j.corsci.2011.10.039

    Article  CAS  Google Scholar 

  9. H. Schönheinz, G. Strang, G.J. Fix, An Analysis of the Finite Element Method. Series in Automatic Computation. XIV + 306 S. m. Fig (Prentice-Hall, Inc., Englewood Clifs, N. J., 1973) ZAMM J. Appl. Math. Mech./Zeitschrift Für Angew. Math. Und Mech. 55, 696–697 (1975). https://doi.org/10.1002/zamm.19750551121

  10. J.N. Reddy, An Introduction To The Finite Element Method, 2nd edn. (McGraw-Hill, New York, 1993)

    Google Scholar 

  11. S.A. Silling, J. Mech. Phys. Solids 48, 175–209 (2000). https://doi.org/10.1016/S0022-5096(99)00029-0

    Article  Google Scholar 

  12. S.A. Silling, M. Zimmermann, R. Abeyaratne, J. Elast. 73, 173–190 (2003). https://doi.org/10.1023/B:ELAS.0000029931.03844.4f

    Article  Google Scholar 

  13. N. Moës, J. Dolbow, T. Belytschko, Int. J. Numer. Methods Eng. 46, 131–150 (1999). https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1%3c131:AID-NME726%3e3.0.CO;2-J

    Article  Google Scholar 

  14. R. Folch, J. Casademunt, A. Hernández-Machado, L. Ramírez-Piscina, Phys. Rev. E 60, 1734–1740 (1999). https://doi.org/10.1103/PhysRevE.60.1734

    Article  CAS  Google Scholar 

  15. G.I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture, in Advances in applied mechanics, ed. by H.L. Dryden, T. von Kármán, G. Kuerti, F.H. van den Dungen, L. Howarth (Elsevier, New York, 1962), pp. 55–129. https://doi.org/10.1016/S0065-2156(08)70121-2

    Chapter  Google Scholar 

  16. W.K. Pratt, Digital Image Processing: PIKS Inside, 3rd edn. (Wiley, New York, 2001)

    Book  Google Scholar 

  17. Z. Jin-Yu, C. Yan, and H. Xian-Xiang, Edge detection of images based on improved Sobel operator and genetic algorithms, in 2009 International Conference on Image and Signal Processing (2009), pp. 31–35. https://doi.org/10.1109/IASP.2009.5054605

  18. V. Srinivasan, P. Bhatia, S.H. Ong, Pattern Recognit. 27, 1653–1662 (1994). https://doi.org/10.1016/0031-3203(94)90084-1

    Article  Google Scholar 

  19. R. Wang, Edge detection using convolutional neural network BT—advances in neural networks—ISNN 2016, in ed. by L. Cheng, Q. Liu, A. Ronzhin (Springer, Cham, 2016), pp. 12–20

  20. A.E. Mohamed, Y.A. Estaitia, M.A. Khafagy, Int. J. Adv. Comput. Sci. Appl. 4, 11–17 (2013). https://doi.org/10.14569/IJACSA.2013.041003

    Article  Google Scholar 

  21. T.Y. Zhang, C.Y. Suen, A fast parallel algorithm for thinning digital patterns. Commun. ACM (1984). https://doi.org/10.1145/357994.358023

    Article  Google Scholar 

  22. Z. Guo, R.W. Hall, Parallel thinning with two subiteration algorithms. Commun. ACM 15, 359–373 (1989). https://doi.org/10.1145/62065.62074

    Article  Google Scholar 

  23. G.A. Story, L. O’Gorman, D. Fox, L.L. Schaper, H.V. Jagadish, The RightPages image-based electronic library for alerting and browsing. Computer 25, 17–26 (1992). https://doi.org/10.1109/2.156379

    Article  Google Scholar 

  24. L. O’Gorman, Image and document processing techniques for the RightPages electronic library system, in Proceedings., 11th IAPR International Conference on Pattern Recognition. Vol. II. Conference B: Pattern Recognition Methodology and Systems (The Hague, Netherlands, 1992), pp. 260–263. https://doi.org/10.1109/ICPR.1992.201768

  25. K. Chinnasarn, Y. Rangsanseri, P. Thitimajshima, Removing salt-and-pepper noise in text/graphics images, in IEEE. APCCAS 1998. 1998 IEEE Asia-Pacific Conference on Circuits and Systems. Microelectronics and Integrating Systems (Cat. No. 98EX242) (Chiangmai, Thailand, 1998), pp. 459–462. https://doi.org/10.1109/APCCAS.1998.743809

  26. N. Jamil, T. Sembok, Z.A. Bakar, Noise removal and enhancement of binary images using morphological operations, in 2008 International Symposium on Information Technology (Kuala Lumpur, 2008), pp. 1–6. https://doi.org/10.1109/ITSIM.2008.4631954

  27. H.S.M. Al-Khaffaf, A.Z. Talib, R.A. Salam, Removing salt-and-pepper noise from binary images of engineering drawings, in 19th International Conference on Pattern Recognition (2008), pp. 1–4. https://doi.org/10.1109/ICPR.2008.4761425

  28. S. Pyatykh, J. Hesser, Salt and pepper noise removal in binary images using image block prior probabilities. J. Vis. Commun. Image Represent. 25, 748–754 (2014). https://doi.org/10.1016/j.jvcir.2014.02.001

    Article  Google Scholar 

  29. J.Y. Kang, D.H. Kim, S.I. Baik, T.H. Ahn, Y.W. Kim, H.N. Han, K.H. Oh, H.C. Lee, S.H. Han, Phase analysis of steels by grain-averaged EBSD functions. ISIJ Int. 51, 130–136 (2011). https://doi.org/10.2355/isijinternational.51.130

    Article  CAS  Google Scholar 

  30. C. Herrera, D. Ponge, D. Raabe, Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability. Acta Mater. 59, 4653–4664 (2011). https://doi.org/10.1016/j.actamat.2011.04.011

    Article  CAS  Google Scholar 

  31. R. Kaçar, Effect of solidification mode and morphology of microstructure on the hydrogen content of duplex stainless steel weld metal. Mater. Des. 25, 1–9 (2004). https://doi.org/10.1016/S0261-3069(03)00169-9

    Article  CAS  Google Scholar 

  32. M.C. Young, L.W. Tsay, C.S. Shin, S.L.I. Chan, The effect of short time post-weld heat treatment on the fatigue crack growth of 2205 duplex stainless steel welds. Int. J. Fatigue 29, 2155–2162 (2007). https://doi.org/10.1016/j.ijfatigue.2007.01.004

    Article  CAS  Google Scholar 

  33. M. Sadeghian, M. Shamanian, A. Shafyei, Effect of heat input on microstructure and mechanical properties of dissimilar joints between super duplex stainless steel and high strength low alloy steel. Mater. Des. 60, 678–684 (2014). https://doi.org/10.1016/j.matdes.2014.03.057

    Article  CAS  Google Scholar 

  34. S. Topolska, J. Łabanowski, Impact-toughness investigations of duplex stainless steels. Mater. Technol. 49, 481–486 (2015). https://doi.org/10.17222/mit.2014.133

    Article  Google Scholar 

  35. I.V. Aguiar, D. Pérez Escobar, D.B. Santos, P.J. Modenesi, Microstructure characterization of a duplex stainless steel weld by electron backscattering diffraction and orientation imaging microscopy techniques. Matéria (Rio J.) 20, 212–226 (2015). https://doi.org/10.1590/S1517-707620150001.0022

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Centro de Investigación en Corrosión of the Universidad Autónoma de Campeche for easing this work. This study has been funded by the Secretaría de Educación Pública of México, under the Project 511-6/18-8491 of the Apoyo a la incorporación de NPTC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Canto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domínguez-Rodríguez, G., González-Sánchez, J.A., Rosado-Carrasco, J. et al. Grain Boundaries and Phases Identification of Metallographic Images by a Normalized Sobel Operation and the Edge Thinning Process for Further Numerical Simulation. Met. Mater. Int. 26, 1306–1317 (2020). https://doi.org/10.1007/s12540-019-00380-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00380-6

Keywords

Navigation