Skip to main content
Log in

Mechanical Properties and Microstructural Behaviour of Microwave Sintered WC–Co

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Cemented carbides have been of great interest within industrially manufacturable hard materials for their mechanical properties. Microwave sintering is known for its application on a range of hard materials. Although it has been widely used, its effect on grain growth of materials still requires clear understanding. Three different types of particle size, ranging from 1–3 µm to 100 nm were used for microwave sintering where temperature was used in this study within the range of 1000–1400 °C, while pressure during initial compaction of powder particles was kept constant. The maximum hardness was observed in the order of nearly 1800 Hv for submicron samples, sintered at 1250 °C. Fracture toughness on the samples reached a maximum of 16 MPa √m for micron samples sintered at 1400 °C. Grain growth in all samples was not more than 1–3 µm, even without the presence of any commercial grain growth inhibitors as part of the composition. Line scanning between grains demonstrates the presence of homogenous Co, confirming good mechanical behaviour. The microstructural features associated to the sintering process have also been focused as part of the study, highlighting some challenges in the research.

Graphic Abstract

Line scanning of WC (1–3 μm)–7.5 wt% Co (1–3 μm) sample, microwave sintered at 1400 °C

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Oghbaei, O. Mirzaee, J. Alloys Compd. 494, 175–189 (2010)

    Article  CAS  Google Scholar 

  2. R.M. Raihanuzzaman, T.S. Jeong, R. Ghomashchi, Z. Xie, S.-J. Hong, J. Alloys Compd. 615, S564–S568 (2014)

    Article  CAS  Google Scholar 

  3. Y.V. Bykov, K. Rybakov, V. Semenov, J. Phys. D Appl. Phys. 34, R55 (2001)

    Article  CAS  Google Scholar 

  4. C.E. Holcombe, N.L. Dykes, M.S. Morrow. Thermal insulation for high temperature microwave sintering operations and method thereof. Google Patents, (1995)

  5. D.E. Clark, W.H. Sutton, Annu. Rev. Mater. Sci. 26, 299–331 (1996)

    Article  CAS  Google Scholar 

  6. K. Ro, K. Dreyer, T. Gerdes, M. Willert-Porada, Int. J. Refract. Met. Hard Mater. 16, 409–416 (1998)

    Article  Google Scholar 

  7. D.E. Clark, D.C. Folz, J.K. West, Mater. Sci. Eng., A 287, 153–158 (2000)

    Article  Google Scholar 

  8. R.C. Hoffmann, S. Sanctis, E. Erdem, S. Weber, J.J. Schneider, J. Mater. Chem. C 4, 7345–7352 (2016)

    Article  CAS  Google Scholar 

  9. D.K. Agrawal, Curr. Opin. Solid State Mater. Sci. 3, 480–485 (1998)

    Article  CAS  Google Scholar 

  10. R.M. Raihanuzzaman, L.C. Chuan, Z. Xie, R. Ghomashchi, World Acad. Sci. Eng. Technol. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. 9, 930–933 (2015)

    Google Scholar 

  11. Z.-H. Xie, M. Hoffman, Y.B. Cheng, J. Am. Ceram. Soc. 85, 812–818 (2002)

    Article  CAS  Google Scholar 

  12. H. Doi, Y. Fujiwara, K. Miyake, Y. Oosawa, Metall. Mater. Trans. 1, 1417–1425 (1970)

    Article  CAS  Google Scholar 

  13. A. Santhanam, P. Tierney, J. Hunt, Metals Handbook, vol. 2, 10th edn. (ASM International, Materials Park, 1990), pp. 950–977

    Google Scholar 

  14. S. Coromant, Modern Metal Cutting: A Practical Handbook (Sandvik Coromant, Sandviken, 1994)

    Google Scholar 

  15. C. Morton, D. Wills, K. Stjernberg, Int. J. Refract. Met. Hard Mater. 23, 287–293 (2005)

    Article  CAS  Google Scholar 

  16. A. Da Silva, W. Schubert, B. Lux, Mater. Res. 4, 59–62 (2001)

    Article  Google Scholar 

  17. G. Shao, X. Duan, J. Xie, X. Yu, W. Zhang, R. Yuan, Rev. Adv. Mater. Sci. 5, 281–286 (2003)

    CAS  Google Scholar 

  18. B. Meredith, D. Milner, Powder Metall. 19, 38–45 (1976)

    Article  CAS  Google Scholar 

  19. C. Martin, D. Bouvard, S. Shima, J. Mech. Phys. Solids 51, 667–693 (2003)

    Article  Google Scholar 

  20. G. Aryanpour, M. Farzaneh, Powder Technol. 277, 120–125 (2015)

    Article  CAS  Google Scholar 

  21. M.R. Rumman, Z. Xie, S.-J. Hong, R. Ghomashchi, Mater. Des. 68, 221–227 (2015)

    Article  CAS  Google Scholar 

  22. J.-W. Song, R.M. Raihanuzzaman, S.-J. Hong, Powder Technol. 235, 723–727 (2012)

    Article  Google Scholar 

  23. S.-J. Hong, M.R. Rumman, C.K. Rhee, Effect of Magnetic Pulsed Compaction (MPC) on Sintering Behavior of Materials (InTech Publication, Rijeka, 2012)

    Book  Google Scholar 

  24. L. Sun, C. Jia, R. Cao, C. Lin, Int. J. Refract. Met. Hard Mater. 26, 357–361 (2008)

    Article  CAS  Google Scholar 

  25. R.M. Raihanuzzaman, S.-T. Han, R. Ghomashchi, H.-S. Kim, S.-J. Hong, Int. J. Refract. Met. Hard Mater. 53, 2–6 (2015)

    Article  CAS  Google Scholar 

  26. S.I. Cha, S.H. Hong, B.K. Kim, Mater. Sci. Eng. A 351, 31–38 (2003)

    Article  Google Scholar 

  27. C.-C. Jia, H. Tang, X.-Z. Mei, F.-Z. Yin, X.-H. Qu, Mater. Lett. 59, 2566–2569 (2005)

    Article  CAS  Google Scholar 

  28. S. Bhaumik, G. Upadhyaya, M. Vaidya, J. Mater. Process. Technol. 58, 45–52 (1996)

    Article  Google Scholar 

  29. P. Kenny, Powder Met. 14, 22–38 (1971)

    Article  Google Scholar 

  30. N. Ingelstrom, H. Nordberg, Eng. Fract. Mech. 6, 597–607 (1974)

    Article  CAS  Google Scholar 

  31. G. Maizza, S. Grasso, Y. Sakka, T. Noda, O. Ohashi, Sci. Technol. Adv. Mater. 8, 644–654 (2007)

    Article  CAS  Google Scholar 

  32. A. Michalski, D. Siemiaszko, Int. J. Refract. Met. Hard Mater. 25, 153–158 (2007)

    Article  CAS  Google Scholar 

  33. R.M. Raihanuzzaman, J.H. Kim, J.K. Lee, J.S. Yoon, H.-T. Son, S.-J. Hong, Powder Technol. 225, 227–231 (2012)

    Article  Google Scholar 

  34. S. Das, A. Mukhopadhyay, S. Datta, D. Basu, Bull. Mater. Sci. 32, 1–13 (2009)

    Article  CAS  Google Scholar 

  35. D. Demirskyi, H. Borodianska, D. Agrawal, A. Ragulya, Y. Sakka, O. Vasylkiv, J. Alloys Compd. 523, 1–10 (2012)

    Article  CAS  Google Scholar 

  36. E. Breval, J. Cheng, D. Agrawal, P. Gigl, M. Dennis, R. Roy, A. Papworth, Mater. Sci. Eng. A 391, 285–295 (2005)

    Article  Google Scholar 

  37. V. Martínez, J. Echeberria, J. Am. Ceram. Soc. 90, 415–424 (2007)

    Article  Google Scholar 

  38. S. Amberg, H. Doxner, Powder Metall. 20, 1–10 (1977)

    Article  CAS  Google Scholar 

  39. W. Beere, Acta Metall. 23, 131–138 (1975)

    Article  CAS  Google Scholar 

  40. F. Delannay, D. Pardoen, C. Colin, Acta Mater. 53, 1655–1664 (2005)

    Article  CAS  Google Scholar 

  41. R.M. Raihanuzzaman, L.C. Chuan, Z. Xie, R. Ghomashchi, World Acad. Sci. Eng. Technol. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. 9, 993–996 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raihan Rumman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rumman, R., Chuan, L.C., Quinton, J.S. et al. Mechanical Properties and Microstructural Behaviour of Microwave Sintered WC–Co. Met. Mater. Int. 26, 844–853 (2020). https://doi.org/10.1007/s12540-019-00364-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00364-6

Keywords

Navigation