Skip to main content
Log in

Deformation Behaviors of Flat Rolled Wire in Twinning-Induced Plasticity Steel

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The influence of room temperature flat rolling on microstructure, mechanical properties, and shape change in twinning-induced plasticity (TWIP) steel wire has been investigated to understand the deformation behaviors of flat rolled wire in TWIP steel and to apply TWIP steels to flat rolled wire products. Numerical simulation, hardness test, and EBSD techniques were used to analyze the distribution of strain, mechanical properties, and microstructure of flat rolled TWIP steel wire. The shape of flat rolled TWIP steel wire was also evaluated and compared with plain carbon steels having low strain hardening rate. A very different behavior of hardness, strain, twinning, and KAM value was observed with area of flat rolled wire due to the different stress state and strain with area of wire. The center area had the maximum twin density, KAM value, effective strain, and hardness; whereas free surface area had the minimum values. The hardness inhomogeneity factor (HIF) along the horizontal direction was much higher in comparison with that of the vertical direction. The maximum HIF value occurred at the specific reduction in height, i.e., 27%. This means HIF value gradually increased and then decreased with reduction in height, which is inconsistent with the results of plain carbon steel and Cu wire. The lateral spread and width of contact area of flat rolled TWIP steel wire were lower than those of plain carbon steels, indicating that material properties such as strain hardening exponent are crucial parameters that influence the shape of flat rolled wire products.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J.K. Hwang, Mater. Sci. Eng. A 711, 156 (2018)

    CAS  Google Scholar 

  2. R. Iankov, J. Mater. Process. Technol. 142, 355 (2003)

    Google Scholar 

  3. F. Lambiase, A.D. Ilio, J. Manuf. Process. 14, 208 (2012)

    Google Scholar 

  4. T. Inoue, F. Yin, Y. Kimura, Mater. Sci. Eng. A 466, 114 (2007)

    Google Scholar 

  5. F. Yin, T. Hanamura, T. Inoue, K. Nagai, Metall. Mater. Trans. A 35A, 665 (2004)

    CAS  Google Scholar 

  6. T. Inoue, F. Yin, Y. Kimura, K. Tsuzaki, S. Ochiai, Metall. Mater. Trans. A 41A, 341 (2010)

    CAS  Google Scholar 

  7. S. Torizuka, E. Muramatsu, S.V.S.N. Murty, K. Nagai, Scr. Mater. 55, 751 (2006)

    CAS  Google Scholar 

  8. Y.S. Oh, I.H. Son, K.H. Jung, D.K. Kim, D.L. Lee, Y.T. Im, Mater. Sci. Eng. A 528, 5833 (2011)

    CAS  Google Scholar 

  9. T. Lee, C.H. Park, S.Y. Lee, I.H. Son, D.L. Lee, C.S. Lee, Met. Mater. Int. 18, 391 (2012)

    CAS  Google Scholar 

  10. Y.S. Chun, J. Lee, C.M. Bae, K.T. Prak, C.S. Lee, Scr. Mater. 67, 681 (2012)

    CAS  Google Scholar 

  11. T. Lee, M. Koyama, K. Tsuzaki, Y.H. Lee, C.S. Lee, Mater. Lett. 75, 169 (2012)

    CAS  Google Scholar 

  12. T. Mukai, H. Somekawa, T. Inoue, A. Singh, Scr. Mater. 62, 113 (2010)

    CAS  Google Scholar 

  13. T. Lee, K.T. Park, D.J. Lee, J. Jeong, S.H. Oh, H.S. Kim, C.H. Park, C.S. Lee, Mater. Sci. Eng. A 648, 359 (2015)

    CAS  Google Scholar 

  14. G. Krallics, J. Gubicza, Z. Bezi, I. Barkai, J. Mater. Process. Technol. 214, 1307 (2014)

    CAS  Google Scholar 

  15. J. Lee, J. Park, H. Jeong, Mater. Lett. 222, 122 (2018)

    CAS  Google Scholar 

  16. J.G. Kim, M.I. Latypov, D.J. Lee, H.G. Jeong, J.B. Lee, S. Lee, H.S. Kim, Metall. Mater. Trans. A 46, 260 (2014)

    Google Scholar 

  17. C. Vallellano, P.A. Cabanillas, F.J. Garcia-Lomas, J. Mater. Process. Technol. 195, 63 (2008)

    CAS  Google Scholar 

  18. M. Kazeminezhad, A. Karimi Taheri, Mater. Des. 26, 99 (2005)

    Google Scholar 

  19. M. Kazeminezhad, A. Karimi Taheri, J. Mater. Process. Technol. 160, 313 (2005)

    CAS  Google Scholar 

  20. M. Kazeminezhad, A. Karimi Taheri, A.K. Tieu, J. Mater. Process. Technol. 200, 325 (2008)

    CAS  Google Scholar 

  21. T. Masse, Y. Chastel, P. Montmitonnet, C. Bobadilla, N. Persem, S. Foissey, J. Mater. Process. Technol. 211, 103 (2011)

    CAS  Google Scholar 

  22. H. Utsunomiya, P. Hartley, I. Pillinger, J. Manuf. Sci. Eng. 123, 397 (2001)

    Google Scholar 

  23. A. Parvizi, B. Pasoodeh, K. Abrinia, H. Akbari, J. Mater. Process. Technol. 20, 245 (2015)

    Google Scholar 

  24. M. Kazeminezhad, A. Karimi Taheri, Mater. Lett. 60, 3265 (2006)

    CAS  Google Scholar 

  25. M. Kazeminezhad, A. Karimi Taheri, Mater. Des. 28, 2047 (2007)

    CAS  Google Scholar 

  26. M. Kazeminezhad, A. Karimi Taheri, J. Mater. Process. Technol. 202, 553 (2008)

    CAS  Google Scholar 

  27. T. Masse, Y. Chastel, P. Montmitonnet, C. Bobadilla, N. Persem, S. Foissey, Int. J. Mater. Form. 5, 129 (2012)

    Google Scholar 

  28. J.K. Hwang, I.C. Yi, I.H. Son, J.Y. Yoo, B. Kim, A. Zargaran, N.J. Kim, Mater. Sci. Eng. A 644, 41 (2015)

    CAS  Google Scholar 

  29. J.K. Hwang, I.H. Son, J.Y. Yoo, A. Zargaran, N.J. Kim, Met. Mater. Int. 21, 815 (2015)

    CAS  Google Scholar 

  30. O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, D. Barbier, Curr. Opin. Solid State Mater. Sci. 15, 141 (2011)

    CAS  Google Scholar 

  31. O. Grassel, L. Kruger, G. Frommeyer, L.W. Meyer, Int. J. Plast. 16, 1391 (2000)

    CAS  Google Scholar 

  32. D. Barbier, N. Gey, S. Allain, N. Bozzolo, M. Humbert, Mater. Sci. Eng. A 500, 196 (2009)

    Google Scholar 

  33. J.E. Jin, Y.K. Lee, Mater. Sci. Eng. A 527, 157 (2009)

    Google Scholar 

  34. H. Idrissi, K. Renard, D. Schryvers, P.J. Jacques, Scr. Mater. 63, 961 (2010)

    CAS  Google Scholar 

  35. O.A. Zambrano, J. Mater. Sci. 53, 14003 (2018)

    CAS  Google Scholar 

  36. J.E. Jung, J. Park, J. Kim, J.B. Jeon, S.K. Kim, Y.W. Chang, Met. Mater. Int. 20, 27 (2014)

    CAS  Google Scholar 

  37. Z.C. Luo, M.X. Huang, Scr. Mater. 142, 28 (2018)

    CAS  Google Scholar 

  38. K.H. So, J.S. Kim, Y.S. Chun, K.T. Park, Y.K. Lee, C.S. Lee, ISIJ Int. 49, 1952 (2009)

    CAS  Google Scholar 

  39. J.K. Hwang, J. Mater. Sci. 54, 8743 (2019)

    CAS  Google Scholar 

  40. A. Saeed-Akbari, J. Imlau, U. Prahl, W. Bleck, Metall. Mater. Trans. A 40, 3076 (2009)

    Google Scholar 

  41. J.E. Jin, Y.K. Lee, Acta Mater. 60, 1680 (2012)

    CAS  Google Scholar 

  42. J.T. Benzing, W.A. Poling, D.T. Pierce, J. Bentley, K.O. Findley, D. Raabe, J.E. Wittig, Mater. Sci. Eng. A 711, 78 (2018)

    CAS  Google Scholar 

  43. H.K. Yang, Z.J. Zhang, Y.Z. Tian, Z.F. Zhang, Mater. Sci. Eng. A 690, 146 (2017)

    CAS  Google Scholar 

  44. S.Y. Lee, S.I. Lee, B. Hwang, Mater. Sci. Eng. A 711, 22 (2018)

    CAS  Google Scholar 

  45. H.K. Yang, Z.J. Zhang, Z.F. Zhang, Mater. Sci. Eng. A 622, 184 (2015)

    CAS  Google Scholar 

  46. A.S. Hamada, A. Kisko, A. Khosravifard, M.A. Hassan, L.P. Karjalainen, D. Porter, Mater. Sci. Eng. A 712, 255 (2018)

    CAS  Google Scholar 

  47. Z.Y. Liang, X. Wang, W. Huang, M.X. Huang, Acta Mater. 88, 170 (2015)

    CAS  Google Scholar 

  48. H.K. Yang, Z.J. Zhang, F.Y. Dong, Q.Q. Duan, Z.F. Zhang, Mater. Sci. Eng. A 607, 551 (2014)

    CAS  Google Scholar 

  49. G. Joo, H. Huh, Int. J. Mech. Sci. 146–147, 432 (2018)

    Google Scholar 

  50. J.G. Eom, Y.H. Son, S.W. Jeong, S.T. Ahn, S.M. Jang, D.J. Yoon, M.S. Joun, Mater. Des. 54, 1010 (2014)

    CAS  Google Scholar 

  51. S.L. Semiatin, J.J. Jonas, Formability and Workability of Metals: Plastic Instability and Flow Localization, vol. 71 (American Society for Metals, USA, 1984)

    Google Scholar 

  52. B. Carlsson, J. Mater. Process. Technol. 73, 1 (1998)

    Google Scholar 

  53. M. Kazeminezhad, A. Karimi Taheri, J. Mater. Process. Technol. 171, 253 (2006)

    CAS  Google Scholar 

  54. K. Jeong, J.E. Jin, Y.S. Jung, S. Kang, Y.K. Lee, Acta Mater. 61, 3399 (2013)

    CAS  Google Scholar 

  55. A.J. Schwartz, M. Kumar, B.L. Adams, D.P. Field, Electron Backscatter Diffraction in Materials Science, 2nd edn. (Springer, 2009) pp. 251–262

  56. B.W. Williams, C.H.M. Simha, N. Abedrabbo, R. Mayer, M.J. Worswick, Int. J. Impact Eng. 37, 652 (2010)

    Google Scholar 

  57. Z. Wusatowski, Fundamentals of Rolling (Pergamon Press, London, 1969), pp. 87–107

    Google Scholar 

  58. H.S. Kim, M.H. Seo, S.I. Hong, Mater. Sci. Eng. A 291, 86 (2000)

    Google Scholar 

Download references

Acknowledgements

This Research was supported by National Research Foundation of Korea (NRF-2018R1D1A1B07050103) and the Tongmyong University Research Grants 2019 (2019F005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joong-Ki Hwang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, JK. Deformation Behaviors of Flat Rolled Wire in Twinning-Induced Plasticity Steel. Met. Mater. Int. 26, 603–616 (2020). https://doi.org/10.1007/s12540-019-00363-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00363-7

Keywords

Navigation