Advertisement

Investigation on the Creep Behavior of AZ91 Magnesium Alloy Processed by Severe Plastic Deformation

  • Iraj Khoubrou
  • Bahram NamiEmail author
  • Seyyed Mehdi Miresmaeili
Article
  • 25 Downloads

Abstract

This paper describes the grain refinement due to equal-channel angular pressing (ECAP) and the creep properties of the ECAP-processed AZ91 magnesium alloy. The resulting microstructure and creep properties were examined by scanning electron microscope and impression creep test method. Microstructural evolution reveals that the grains were refined to 14 µm after four ECAP passes at 628 K, following route Bc. The creep tests were carried out under stresses in the range of 35 to 95 MPa at temperatures in the range of 538 to 583 K. Based on a power law between the impression rate and stress, the stress exponents were about 2 and the activation energies were about 129 kJ/mol, which are close to that for lattice diffusion of magnesium. Considering the obtained results, it can be stated that the grain boundary sliding is the dominant creep mechanism at low stresses and high temperatures.

Graphic Abstract

Deformation mechanism is grain boundary sliding (GBS) during creep of the AZ91 alloy at low stresses and high temperature and deformation behavior can be determined from:
$$\upvarepsilon^{\cdot } = 7.25\left({\frac{{\text{b}}}{{\text{d}}}} \right)^{2} \left({\frac{{\text{Gb}}}{{\text{kT}}}} \right)\left( {\frac{\upsigma}{{\text{G}}}} \right)^{{2.02}} {\text{D}}_{L}$$

Keywords

Magnesium alloy Equal-channel angular pressing Creep properties Grain boundary sliding Microstructure 

Notes

References

  1. 1.
    X.U. Yan, L.X. Hu, S.U.N. Yu, J.B. Jia, J.F. Jiang, Trans. Nonferrous Met. Soc. China 25, 381 (2015)CrossRefGoogle Scholar
  2. 2.
    X.C. Luo, D.T. Zhang, W.W. Zhang, C. Qiu, D.L. Chen, Mater. Sci. Eng., A 725, 398 (2018)CrossRefGoogle Scholar
  3. 3.
    G. Zeng, C. Liu, Y. Wan, Y. Gao, S. Jiang, Z. Chen, Mater. Sci. Eng., A 734, 59 (2018)CrossRefGoogle Scholar
  4. 4.
    B.L. Mordike, T. Ebert, Mater. Sci. Eng., A 302, 37 (2001)CrossRefGoogle Scholar
  5. 5.
    M. Celikin, M. Pekguleryuz, in TMS Annual Meeting & Exhibition (Springer, Cham, 2018), p. 337Google Scholar
  6. 6.
    D.H. Hou, S.M. Liang, R.S. Chen, C. Dong, E.H. Han, Acta Metall. Sin. (Engl. Lett.) 28, 115 (2015)CrossRefGoogle Scholar
  7. 7.
    B.A. Esgandari, H. Mehrjoo, B. Nami, S.M. Miresmaeili, Mater. Sci. Eng., A 528, 5018 (2011)CrossRefGoogle Scholar
  8. 8.
    R. Panicker, A.H. Chokshi, R.K. Mishra, R. Verma, P.E. Krajewski, Acta Mater. 57, 3683 (2009)CrossRefGoogle Scholar
  9. 9.
    J. Xu, X. Wang, X. Zhu, M. Shirooyeh, J. Wongsa-Ngam, D. Shan, B. Guo, T.G. Langdon, J. Mater. Sci. 48, 4117 (2013)CrossRefGoogle Scholar
  10. 10.
    Y. Yuan, A. Ma, X. Gou, J. Jiang, G. Arhin, D. Song, H. Liu, Mater. Sci. Eng., A 677, 125 (2016)CrossRefGoogle Scholar
  11. 11.
    R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zechetbauer, Y.T. Zhu, JOM 58, 33 (2006)CrossRefGoogle Scholar
  12. 12.
    T.G. Langdon, Mater. Sci. Eng., A 462, 3 (2007)CrossRefGoogle Scholar
  13. 13.
    R.Z. Valiev, T.G. Langdon, Prog. Mater Sci. 51, 881 (2006)CrossRefGoogle Scholar
  14. 14.
    A. Yamashita, D. Yamaguchi, Z. Horita, T.G. Langdon, Mater. Sci. Eng., A 287, 100 (2000)CrossRefGoogle Scholar
  15. 15.
    R.B. Figueiredo, T.G. Langdon, J. Mater. Sci. 43, 7366 (2008)CrossRefGoogle Scholar
  16. 16.
    P.S. Roodposhti, A. Sarkar, K.L. Murty, H. Brody, R. Scattergood, Mater. Sci. Eng., A 669, 171 (2016)CrossRefGoogle Scholar
  17. 17.
    M. Alvarez-Leal, A. Orozco-Caballero, F. Carreno, O.A. Ruano, Mater. Sci. Eng., A 710, 240 (2018)CrossRefGoogle Scholar
  18. 18.
    Y.H. Wei, Q.D. Wang, Y.P. Zhu, H.T. Zhou, W.J. Ding, Y. Chino, M. Mabuchi, Mater. Sci. Eng., A 360, 107 (2003)CrossRefGoogle Scholar
  19. 19.
    R.B. Figueiredo, T.G. Langdon, Mater. Sci. Eng., A 501, 105 (2009)CrossRefGoogle Scholar
  20. 20.
    L. Li, W. Wei, Y. Lin, C. Lijia, L. Zheng, J. Mater. Sci. 41, 409 (2006)CrossRefGoogle Scholar
  21. 21.
    K. Kubota, M. Mabuchi, K. Higashi, J. Mater. Sci. 34, 2255 (1999)CrossRefGoogle Scholar
  22. 22.
    B. Nami, H. Razavi, S. Mirdamadi, S.G. Shabestari, S.M. Miresmaeili, Metall. Mater. Trans. A 41, 1973 (2010)CrossRefGoogle Scholar
  23. 23.
    F. Kabirian, R. Mahmudi, Metall. Mater. Trans. A 40, 116 (2009)CrossRefGoogle Scholar
  24. 24.
    R. Jahadi, M. Sedighi, H. Jahed, Mater. Sci. Eng., A 593, 178 (2014)CrossRefGoogle Scholar
  25. 25.
    S.H. Kang, Y.S. Lee, J.H. Lee, J. Mater. Process. Technol. 201, 436 (2008)CrossRefGoogle Scholar
  26. 26.
    K.R. Gopi, H.S. Nayaka, S. Sahu, J. Mater. Eng. Perform. 26, 3399–3409 (2017)CrossRefGoogle Scholar
  27. 27.
    S.B. Xu, Q.I.N. Zhen, L.I.U. Ting, C.N. Jing, G.C. Ren, Trans. Nonferrous Met. Soc. China 22, 61 (2012)CrossRefGoogle Scholar
  28. 28.
    X.M. Feng, T.T. Ai, Trans. Nonferrous Met. Soc. China 19, 293–298 (2009)CrossRefGoogle Scholar
  29. 29.
    C.W. Chung, R.G. Ding, Y.L. Chiu, W. Gao, J. Phys: Conf. Ser. 241, 012101 (2010)Google Scholar
  30. 30.
    Y. Yuan, A. Ma, J. Jiang, F. Lu, W. Jian, D. Song, Y.T. Zhu, Mater. Sci. Eng., A 588, 329 (2013)CrossRefGoogle Scholar
  31. 31.
    B. Chen, D.L. Lin, L. Jin, X.Q. Zeng, C. Lu, Mater. Sci. Eng., A 483, 113 (2008)CrossRefGoogle Scholar
  32. 32.
    K. Ishikawa, H. Watanabe, T. Mukai, Mater. Lett. 59, 1511 (2005)CrossRefGoogle Scholar
  33. 33.
    F. Yang, J.C. Li, Mater. Sci. Eng., R 74, 233 (2013)CrossRefGoogle Scholar
  34. 34.
    E.M. Mazraeshahi, B. Nami, S.M. Miresmaeili, Mater. Des. 51, 427 (2013)CrossRefGoogle Scholar
  35. 35.
    R.J. Nabariya, S. Goyal, M. Vasudevan, N. Arivazhagan, Mater. Today Proc. 5, 12320 (2018)CrossRefGoogle Scholar
  36. 36.
    M.E. Kassner, M.T. Perez-Prado, Fundamentals of Creep in Metals and Alloys, 1st edn. (Elsevier Science, Amsterdam, 2004)Google Scholar
  37. 37.
    A. Heczel, F. Akbaripanah, M.A. Salevati, R. Mahmudi, A. Vida, J. Gubicza, J. Alloys Compd. 763, 629 (2018)CrossRefGoogle Scholar
  38. 38.
    M. Janeček, J. Čížek, J. Gubicza, J. Vrátná, J. Mater. Sci. 47, 7860 (2012)CrossRefGoogle Scholar
  39. 39.
    J.N. Wang, A.J. Schwartz, T.G. Nieh, D. Clemens, Mater. Sci. Eng., A 206, 63 (1996)CrossRefGoogle Scholar
  40. 40.
    R. Mahmudi, R. Alizadeh, A.R. Geranmayeh, Scr. Mater. 64, 521 (2011)CrossRefGoogle Scholar
  41. 41.
    H. Somekawa, K. Hirai, H. Watanabe, Y. Takigawa, K. Higashi, Mater. Sci. Eng. A 407, 53 (2005)CrossRefGoogle Scholar
  42. 42.
    S.M. Miresmaeili, B. Nami, Mater. Des. 56, 286 (2014)CrossRefGoogle Scholar
  43. 43.
    B. Kondori, R. Mahmudi, Mater. Sci. Eng., A 700, 438 (2017)CrossRefGoogle Scholar
  44. 44.
    S.N.G. Chu, J.C.M. Li, J. Mater. Sci. 12, 2200 (1977)CrossRefGoogle Scholar
  45. 45.
    J.C. Li, Mater. Sci. Eng., A 322, 23 (2002)CrossRefGoogle Scholar
  46. 46.
    S.M. Miresmaeili, B. Nami, R. Abbasi, I. Khoubrou, JOM 71, 2128–2135 (2019)CrossRefGoogle Scholar
  47. 47.
    S. Ganguly, A.K. Mondal, Mater. Sci. Eng., A 718, 377 (2018)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  • Iraj Khoubrou
    • 1
  • Bahram Nami
    • 1
    Email author
  • Seyyed Mehdi Miresmaeili
    • 1
  1. 1.Department of Materials Engineering and New TechnologiesShahid Rajaee Teacher Training University (SRTTU)Lavizan, TehranIran

Personalised recommendations