Corrosion and Creep Properties of Weld Beads Produced on AA5083-H111 Alloy Sheets Using SpinArc GMAW Process

  • V. Poonguzhali
  • M. Umar
  • P. SathiyaEmail author


In this work, the corrosion and creep properties of weld beads produced on AA5083-H111 alloy using SpinArc gas metal arc welding process were analyzed. For that, bead on plate welding was carried out considering welding current, filler spin diameter and filler rotation speed as input parameters. It is evident from the microstructures that change in filler spin diameter and filler rotation speed altered the shape of weld bead irrespective of welding current. Also, porosities were formed at both side walls where the columnar dendrites grow upward while the equiaxed dendrites zone contains comparatively fewer porosities. On comparing the left and a right side wall, a higher density of porosities are observed at the right side wall and the direction of rotation was expected to be responsible for this occurrence. The pitting morphology of both side walls was not similar due to the variance in concentration of Mg and a higher amount of Mg exists on the right side wall led to the precipitation of Mg-rich rich particles result in severe corrosion. A welding current of 130 Amps, the filler rotation speed of 1050 rpm and filler spin diameter of 2 mm produced a high density of dislocations and a higher number of Fe and Mn-rich intermetallics at grain interiors as well as grain boundaries, thereby, results in improved corrosion and creep properties of weld. The weld contains larger porosities results in poor corrosion and creep properties.

Graphic Abstract


Aluminum alloy SpinArc GMAW Corrosion Creep Porosity Transmission electron microscope 



The authors would like to express their most profound appreciation and sincere thanks to Swastik Industrial Products and Services, Tiruchirappalli, Tamilnadu, India, for providing the SpinArc GMAW torch facility to conduct welding experiments.


  1. 1.
    G. Yi, B. Sun, J.D. Poplawsky, Y. Zhu, M.L. Free, J. Alloy. Compd. 740, 461 (2018)CrossRefGoogle Scholar
  2. 2.
    S.L. Xia, M. Ma, J.X. Zhang, W.X. Wang, W.C. Liu, Mater. Sci. Eng., A 609, 168 (2014)CrossRefGoogle Scholar
  3. 3.
    R. Bauri, D. Yadav, C.N. Shyam Kumar, B. Balaji, Mater. Sci. Eng., A 620, 67 (2015)CrossRefGoogle Scholar
  4. 4.
    J. Yan, A.M. Hodge, J. Alloy. Compd. 703, 242 (2017)CrossRefGoogle Scholar
  5. 5.
    Y. Liu, W. Wang, J. Xie, S. Sun, L. Wang, Y. Qian, Y. Meng, Y. Wei, Mater. Sci. Eng., A 549, 7 (2012)CrossRefGoogle Scholar
  6. 6.
    L. Huang, X. Hua, W. Dongsheng, Z. Jiang, F. Li, H. Wang, S. Shi, Int. J. Adv. Manuf. Technol. 93, 1809 (2017)CrossRefGoogle Scholar
  7. 7.
    A.R. Koushki, M. Goodarzi, M. Paidar, Int. J. Min. Met. Mater. 23(12), 1416 (2016)CrossRefGoogle Scholar
  8. 8.
    J.C. Dutra, RHG eSilva. BM Savi, C Marques, OE Alarcon, Weld World 59, 797 (2015)CrossRefGoogle Scholar
  9. 9.
    B. Gungor, E. Kaluc, E. Taban, Aydin SIK. Mater. Des. 54, 207 (2014)CrossRefGoogle Scholar
  10. 10.
    L. Huang, W. Dongsheng, X. Hua, S. Liu, Z. Jiang, F. Li, H. Wang, S. Shi, J. Manuf. Process. 31, 514 (2018)CrossRefGoogle Scholar
  11. 11.
    X. Guoxiang, L. Li, J. Wang, J. Zhu, P. Li, Int. J. Adv. Manuf. Technol. 96, 1905 (2018)CrossRefGoogle Scholar
  12. 12.
    J.Y. Wang, Y.S. Ren, F. Yang, H.B. Guo, Sci. Technol. Weld. Joi. 12(6), 505 (2007)CrossRefGoogle Scholar
  13. 13.
    C.L. Yang, N. Guo, S.B. Lin, C.L. Fan, Y.Q. Zhang, Sci. Technol. Weld. Joi. 14(2), 172 (2009)CrossRefGoogle Scholar
  14. 14.
    C. Zhu, X. Tang, Y. He, L. Fenggui, H. Cui, Int. J. Adv. Manuf. Technol. 90, 2513 (2017)CrossRefGoogle Scholar
  15. 15.
    C. Zhu, J. Cheon, X. Tang, S.-J. Na, L. Fenggui, H. Cui, J. Mater. Process. Technol. 259, 243 (2018)CrossRefGoogle Scholar
  16. 16.
    C. Zhu, X. Tang, Y. He, L. Fenggui, H. Cui, J. Mater. Process. Technol. 238, 274 (2016)CrossRefGoogle Scholar
  17. 17.
    Y. He, X. Tang, C. Zhu, L. Fenggui, H. Cui, Int. J. Adv. Manuf. Technol. 92, 4303 (2017)CrossRefGoogle Scholar
  18. 18.
    M. Umar, P. Sathiya, Adv. Eng. Mater. 1701147 (2018)Google Scholar
  19. 19.
    S.-J. Kim, S.-K. Kim, J.-C. Park, Surf. Coat. Technol. 205, S73 (2010)CrossRefGoogle Scholar
  20. 20.
    S.D. Zhang, J. Wu, W.B. Qi, J.Q. Wang, Corros. Sci. 110, 57 (2016)CrossRefGoogle Scholar
  21. 21.
    U. Mustafa, M. Chandra, S. Paulraj, Trans. Ind. Inst. Met. 71(8), 1975 (2018)CrossRefGoogle Scholar
  22. 22.
    Y. Huang, Y. Li, Yu. Zhengbing Xiao, Y.H. Liu, X. Ren, J. Alloy. Compd. 673, 73 (2016)CrossRefGoogle Scholar
  23. 23.
    A. Alizadeh, A. Abdollahi, H. Biukani, J. Alloy. Compd. 650, 783 (2015)CrossRefGoogle Scholar
  24. 24.
    M.A. García-Bernal, R.S. Mishra, R. Verma, D. Hernández-Silva, Mater. Sci. Eng., A 636, 326 (2015)CrossRefGoogle Scholar
  25. 25.
    Z. Zhang, B.Q. Han, Y. Zhou, E.J. Lavernia, Mater. Sci. Eng., A 493, 221 (2008)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Department of Production EngineeringNational Institute of Technology TiruchirappalliTiruchirappalliIndia

Personalised recommendations