Metals and Materials International

, Volume 25, Issue 5, pp 1366–1377 | Cite as

Effect of TiBCN Content on Microstructure and Properties of Laser Cladding Ti/TiBCN Composite Coatings

  • Yuxin Li
  • Keqiang Su
  • Peikang BaiEmail author
  • Liyun Wu
  • Bin Liu
  • Hongwen Su
  • Wenbo Du


The Ti/TiBCN composite coatings were fabricated on the substrate of Ti6Al4V alloy by laser cladding. The effects of TiBCN content on the microstructre, microhardness, corrosion resistance and tribological properties of the composite coatings were studied. The results showed that, when the TiBCN content was 60 wt%, the composite coatings were mainly composed of the dendritic and rod-shaped TiBCN phases, small white lump TiC phases, fine lamellar TiN phases, small and scattered white block TiB2 phases, In addition, there was a small quantity of short whisker Al3Ti phases and uniform layer block TiAl phases. Furhtermore, the maximum microhardness was 1596 HV, which was about 4.6 folds greater than that of the substrate; the corrosion potential (Ecorr) reached − 1.258 V and the corrosion current density (Icorr) was 4.035 × 10−5 A/cm2, which was one order lower than that of the substrate (1.172 × 10−4 A/cm2); the worn surface was relatively smooth and the mass loss (1.22 g) was only 9/50 of that of the substrate (6.71 g).


Ti/TiBCN composite coating Microstructure evolution Microhardness Corrosion resistance Tribological properties 



The author would like to acknowledge taiyuan science and technology project (170205) and Natural Science Foundation of China ((Nos. U1810112, 51604246) for the financial support.


  1. 1.
    Y.M. Chi, G.C. Gu, H.J. Yu, C.Z. Chen, Opt. Laser. Eng. 100, 23 (2018)CrossRefGoogle Scholar
  2. 2.
    X. Su, W. Tao, Y. Chen, X. Chen, Z. Tian, Mater. Lett. 195, 228 (2017)CrossRefGoogle Scholar
  3. 3.
    M. Nabhani, R.S. Razavi, M. Barekat, Opt. Laser. Eng. 100, 265 (2018)CrossRefGoogle Scholar
  4. 4.
    C.T. Kwok, H.C. Man, F.T. Cheng, K.H. Lo, Surf. Coat. Tech. 291, 189 (2016)CrossRefGoogle Scholar
  5. 5.
    X.Y. Jiao, J. Wang, C.M. Wang, Z.Q. Gong, X.X. Pang, S.M. Xiong, Opt. Laser. Eng. 110, 163 (2018)CrossRefGoogle Scholar
  6. 6.
    S. Matthews, L.M. Berger, J. Alloy. Compd. 770, 1078 (2019)CrossRefGoogle Scholar
  7. 7.
    D.H. Zhang, D.J. Kong, Appl. Surf. Sci. 457, 69 (2018)CrossRefGoogle Scholar
  8. 8.
    J.S. Meng, G. Jin, X.P. Shi, Appl. Surf. Sci. 431, 135 (2018)CrossRefGoogle Scholar
  9. 9.
    D.B. Wei, P.Z. Zhang, Z.J. Yao, X.H. Chen, F.K. Li, Vacuum 155, 233 (2018)CrossRefGoogle Scholar
  10. 10.
    C.M. Lin, W.Y. Kai, C.Y. Su, C.N. Tsai, Y.C. Chen, J. Alloy. Compd. 717, 197 (2017)CrossRefGoogle Scholar
  11. 11.
    J.L. Daure, M.J. Carrington, P.H. Shipway, D.G. McCartney, D.A. Stewartb, Surf. Coat. Tech. 350, 40 (2018)CrossRefGoogle Scholar
  12. 12.
    W. Guo, J. Chu, W. Nie, Geotext. Geomembranes 46, 625 (2018)CrossRefGoogle Scholar
  13. 13.
    M. Staszuk, D. Pakuła, G. Chladek, M. Pawlyta, M. Pancielejko, P. Czaja, Vacuum 154, 272 (2018)CrossRefGoogle Scholar
  14. 14.
    D. Hui, K. Endo, K. Yamamura, Int. J. Mach. Tools Manuf 115, 38 (2017)CrossRefGoogle Scholar
  15. 15.
    J. Gäbler, S. Pleger, Int. J. Mach. Tools Manuf 50, 420 (2010)CrossRefGoogle Scholar
  16. 16.
    Y.C. Kim, S.J.L. Kang, Int. J. Mach. Tools Manuf 51, 565 (2011)CrossRefGoogle Scholar
  17. 17.
    C. Czettl, J. Thurner, U. Schleinkofer, Int. J. Refract. Met. H. 71, 330 (2018)CrossRefGoogle Scholar
  18. 18.
    T. Lutzler, T.V.J. Charpentier, R. Barker, S. Soltanahmadi, W. Taleb, C. Wang, A. Alejo-Rodriguez, E. Perre, H. Schneider, A. Nevillea, Mater. Chem. Phys. 216, 272 (2018)CrossRefGoogle Scholar
  19. 19.
    A. Alcantara-Garcia, A. Garcia-Casas, A. Jimenez-Morales, Prog. Org. Coat. 124, 267 (2018)CrossRefGoogle Scholar
  20. 20.
    W. Gao, C. Chang, G. Li, Y. Xue, J. Wang, Z. Zhang, X. Lin, Optik. 178, 950 (2019)CrossRefGoogle Scholar
  21. 21.
    Y. Feng, K. Feng, C. Yao, Z. Li, J. Sun, Mater. Des. 157, 258 (2018)CrossRefGoogle Scholar
  22. 22.
    G.H. Meng, X. Lin, H. Xie, T.M. Yue, X. Ding, L. Sun, M. Qi, Mater. Des. 108, 157 (2016)CrossRefGoogle Scholar
  23. 23.
    D. Shu, Z.G. Li, K. Zhang, C.W. Yao, D.Y. Li, Z.B. Dai, Mater. Lett. 195, 178 (2017)CrossRefGoogle Scholar
  24. 24.
    E. Altus, E. Konstantino, Mater. Sci. Eng., A 302, 100 (2001)CrossRefGoogle Scholar
  25. 25.
    X.Y. Liu, P.K. Chu, C.X. Ding, Mater. Sci. Eng. R 47, 49 (2004)CrossRefGoogle Scholar
  26. 26.
    X.Y. Jiao, C.M. Wang, Z.Q. Gong, G.M. Wang, H.F. Sun, H.R. Yang, Surf. Coat. Technol. 325, 643 (2017)CrossRefGoogle Scholar
  27. 27.
    J.F. Li, L. Li, F.H. Stott, Acta Mater. 52, 4385 (2004)CrossRefGoogle Scholar
  28. 28.
    X.Y. Jiao, C.M. Wang, Z.Q. Gong, G.M. Wang, H.F. Sun, H.R. Yang, Surf. Coat. Technol. 325, 643 (2017)CrossRefGoogle Scholar
  29. 29.
    S. Kumar, A. Mandal, A. Das, A. Dixit, Surf. Coat. Technol. 349, 37 (2018)CrossRefGoogle Scholar
  30. 30.
    Y.H. Lv, J. Li, Y.F. Tao, L.F. Hu, Appl. Surf. Sci. 402, 478 (2017)CrossRefGoogle Scholar
  31. 31.
    Y. Sun, M. Hao, Opt. Laser Eng. 50, 985 (2012)CrossRefGoogle Scholar
  32. 32.
    H. Liu, X. Zhang, Y. Jiang, R. Zhou, J. Alloy. Compd. 670, 268 (2016)CrossRefGoogle Scholar
  33. 33.
    Y. Lei, R. Sun, J. Lei, Y. Tang, W. Niu, Opt. Laser Eng. 48, 899 (2010)CrossRefGoogle Scholar
  34. 34.
    Y. Lin, J. Yao, Y. Lei, H. Fu, L. Wang, Opt. Laser Eng. 86, 216 (2016)CrossRefGoogle Scholar
  35. 35.
    J. Li, Z. Yu, H. Wang, Thin Solid Films 519, 4804 (2011)CrossRefGoogle Scholar
  36. 36.
    J.L. Li, G.Y. Cai, H.S. Zhong, Y.X. Wang, J.M. Chen, Rare Met. 36, 858 (2017)CrossRefGoogle Scholar
  37. 37.
    Y. Li, P. Zhang, P. Bai, L. Wu, B. Liu, Z. Zhao, Surf. Coat. Technol. 334, 142 (2018)CrossRefGoogle Scholar
  38. 38.
    Y.X. Li, P.F. Zhang, P.K. Bai, Z.Y. Zhao, Materials 11, 1551 (2018)CrossRefGoogle Scholar
  39. 39.
    M.O.H. Amuda, E.T. Akinlabi, M. Moolla, Mater. Today 4, 763 (2017)Google Scholar
  40. 40.
    Y.G. Han, Y. Yang, L. Wang, X.G. Chen, Z.H. Chu, X.N. Zhang, Y.C. Dong, Z. Liu, D.R. Yan, J.X. Zhang, C.G. Li, Appl. Surf. Sci. 431, 48 (2018)CrossRefGoogle Scholar
  41. 41.
    L. Chen, S.L. Bai, Appl. Surf. Sci. 437, 1 (2018)CrossRefGoogle Scholar
  42. 42.
    L. Yang, Z. Li, Y. Zhang, S. Wei, F. Liu, Appl. Surf. Sci. 435, 1187 (2018)CrossRefGoogle Scholar
  43. 43.
    S. Sun, H. Fu, X. Ping, J. Lin, Y. Lei, W. Wu, J. Zhou, Appl. Surf. Sci. 455, 160 (2018)CrossRefGoogle Scholar
  44. 44.
    Z. Li, R. Xu, Z. Zhang, I. Kucukkoc, Int. J. Mach. Tools Manuf 126, 1 (2018)CrossRefGoogle Scholar
  45. 45.
    Y.X. Li, J.D. Hu, H.Y. Wang, Z.X. Guo, Adv. Eng. Mater. 9, 689 (2017)CrossRefGoogle Scholar
  46. 46.
    Y.X. Li, J.D. Hu, H.Y. Wang, Z.X. Guo, Adv. Eng. Mater. 9, 689 (2010)CrossRefGoogle Scholar
  47. 47.
    Y. Guo, Y. Zhang, Z. Li, S. Wei, T. Zhang, L. Yang, S. Liu, Surf. Coat. Technol. 334, 471 (2018)CrossRefGoogle Scholar
  48. 48.
    M. Stern, A.L. Geary, J. Electrochem. Soc. 104, 56 (1957)CrossRefGoogle Scholar
  49. 49.
    J. Park, H.S. Han, J. Park, H. Seo, J. Edwards, Y.C. Kim, M.R. Ok, H.K. Seok, H. Jeon, Appl. Surf. Sci. 448, 424 (2018)CrossRefGoogle Scholar
  50. 50.
    D. Hawelka, J. Stollenwerk, N. Pirch, K. Wissenbach, P. Loosen, J. Coat. Technol. Res. 11, 3 (2014)CrossRefGoogle Scholar
  51. 51.
    B. Cárcel, A. Serrano, J. Zambrano, A.C. Amigo cárcelc, Phys. Procedia 56, 284 (2014)CrossRefGoogle Scholar
  52. 52.
    Z.T. Wang, X. Lin, Y.Q. Cao, F.C. Liu, W.D. Huang, Opt. Laser Technol. 99, 154 (2018)CrossRefGoogle Scholar
  53. 53.
    X. Duan, S. Gao, Q. Dong, Y. Zhou, M. Xi, X. Xian, B. Wang, Surf. Coat. Technol. 291, 230 (2016)CrossRefGoogle Scholar
  54. 54.
    Y.B. Cao, S.X. Zhi, Q. Gao, X.T. Tian, T. Geng, X. Guan, Mater. Charact. 119, 159 (2016)CrossRefGoogle Scholar
  55. 55.
    N. Atta, M. Abd El Fatah, A. Galal, Int. J. Electrochem. Sci. 12, 1625 (2017)CrossRefGoogle Scholar
  56. 56.
    V. Vijayaraghavan, S. Castagne, Measurement 115, 279 (2018)CrossRefGoogle Scholar
  57. 57.
    J. Lin, J.J. Moore, B. Mishra, M. Pinkas, W.D. Sproul, Acta Mater. 58, 1554 (2010)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringNorth University of ChinaTaiyuanChina
  2. 2.Shanxi Yuhua Remanufacture Technology Co., LtdChangzhiChina
  3. 3.National Key Laboratory for RemanufacturingAcademy of Army Armored ForcesBeijingChina

Personalised recommendations