Metals and Materials International

, Volume 25, Issue 5, pp 1135–1144 | Cite as

Evolution of Microstructures and Properties in AlxCrFeMn0.8Ni2.1 HEAs

  • Xu Chen
  • Di Gao
  • Jia Xuan Hu
  • Ye LiuEmail author
  • Chang Ping Tang


The microstructures, compression and corrosion behaviors of the as-cast AlxCrFeMn0.8Ni2.1 high-entropy alloys (0 ≤ x ≤ 2.3) were investigated in this paper. It was found that the crystal structure changed from initial dual FCC structure to mixed FCC and BCC structure, then to BCC structure as the increasing of Al content. Al0.8CrFeMn0.8Ni2.1 alloy exhibited a typical spinodal structure consisting of alternating two phases microstructure. Moreover, sunflower-like microstructure was obtained in the as-cast AlxCrFeMn0.8Ni2.1 alloys (1.0 ≤ x ≤ 2.0). With the increasing of Al, the macrohardness increased while the plasticity decreased in the alloys. The addition of an appropriate amount of Al could improve the compressive fracture strength of the alloys. In addition, the corrosion resistance deteriorated slightly with the increasing of Al in 1 mol/L NaCl solution.


High-entropy alloys As-cast microstructure Compressive properties Corrosion properties 



The authors are grateful for the financial support from the fund of National Natural Science Foundation of China (51604240), Natural Science Foundation of Hunan Province (2016JJ3121), and General Project of the Education Department of Hunan Province (15C1307, 15C1308).


  1. 1.
    W. Zhang, P.K. Liaw, Y. Zhang, Sci. China Mater. 61, 2 (2018)CrossRefGoogle Scholar
  2. 2.
    C.Y. Hsu, C.C. Juan, T.S. Sheu, S.K. Chen, J.W. Yeh, JOM 65, 1840 (2013)CrossRefGoogle Scholar
  3. 3.
    Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater Sci. 61, 1 (2014)CrossRefGoogle Scholar
  4. 4.
    Z. Li, K.G. Pradeep, D. Yun, D. Raabe, C.C. Tasan, Nature 534, 227 (2016)CrossRefGoogle Scholar
  5. 5.
    J.W. Yeh, Y.L. Chen, S.J. Lin, S.K. Chen, Mater. Sci. Forum 560, 1 (2007)CrossRefGoogle Scholar
  6. 6.
    G. Bernd, H. Anton, C. Dhiraj, E.H. Chang, E.P. George, R.O. Ritchie, Science 345, 1153 (2014)CrossRefGoogle Scholar
  7. 7.
    J.H. Kim, Y.S. Na, Met. Mater. Int. 25, 296 (2019)CrossRefGoogle Scholar
  8. 8.
    F. Zhang, Y. Wu, H.B. Lou, Z.D. Zeng, V.B. Prakapenka, E. Greenberg, Y. Ren, J. Yan, J.S. Okasinski, X.J. Liu, Nat. Commun. 8, 15687 (2017)CrossRefGoogle Scholar
  9. 9.
    D.Y. Li, C.X. Li, F. Tao, Y.D. Zhang, G. Sha, J.J. Lewandowski, P.K. Liaw, Y. Zhang, Acta Mater. 123, 285 (2017)CrossRefGoogle Scholar
  10. 10.
    H. Luo, Z.M. Li, A.M. Mingers, D. Raabe, Corros. Sci. 134, 131 (2018)CrossRefGoogle Scholar
  11. 11.
    Y.S. Huang, L. Chen, H.W. Lui, M.H. Cai, J.W. Yeh, Mater. Sci. Eng. A 457, 77 (2007)CrossRefGoogle Scholar
  12. 12.
    B.Y. Li, K. Peng, A.P. Hu, L.P. Zhou, J.J. Zhu, D.Y. Li, Trans. Nonferrous Met. Soc. China 23, 735 (2013)CrossRefGoogle Scholar
  13. 13.
    J.M. Wu, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang, H.C. Chen, Wear 261, 513 (2006)CrossRefGoogle Scholar
  14. 14.
    L.H. Wen, H.C. Kou, J.S. Li, H. Chang, X.Y. Xue, L. Zhou, Intermetallics 17, 266 (2009)CrossRefGoogle Scholar
  15. 15.
    Y. Liu, M. Chen, Y.X. Li, X. Chen, Rare Met. Mater. Eng. 38, 1602 (2009)Google Scholar
  16. 16.
    W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, J.W. Yeh, Intermetallics 26, 44 (2012)CrossRefGoogle Scholar
  17. 17.
    J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, Z.P. Lu, Acta Mater. 62, 105 (2014)CrossRefGoogle Scholar
  18. 18.
    C.P. Lee, C.C. Chang, Y.Y. Chen, J.W. Yeh, H.C. Shih, Corros. Sci. 50, 2053 (2008)CrossRefGoogle Scholar
  19. 19.
    Y.P. Lu, Y. Dong, S. Guo, L. Jiang, H.J. Kang, T.M. Wang, B. Wen, Z.J. Wang, J.C. Jie, Z.Q. Cao, H.H. Ruan, T.J. Li, Sci. Rep. 4, 6200 (2014)CrossRefGoogle Scholar
  20. 20.
    H.Y. Chen, C.W. Tsai, C.C. Tung, J.W. Yeh, T.T. Shun, Eur. J. Control 31, 685 (2006)Google Scholar
  21. 21.
    Y. Liu, S.G. Ma, M.C. Gao, C. Zhang, T. Zhang, H.J. Yang, Z.H. Wang, J.W. Qiao, Metall. Mater. Trans. A 47, 3781 (2016)CrossRefGoogle Scholar
  22. 22.
    S. Guo, C. Ng, C.T. Liu, J. Alloys Compd. 557, 77 (2013)CrossRefGoogle Scholar
  23. 23.
    C. Ng, S. Guo, J.H. Luan, Q. Wang, J. Lu, S.Q. Shi, C.T. Liu, J. Alloys Compd. 584, 530 (2013)CrossRefGoogle Scholar
  24. 24.
    S. Guo, C. Ng, C.T. Liu, Mater. Res. Lett. 1, 228 (2013)CrossRefGoogle Scholar
  25. 25.
    H.Y. Chen, C.W. Tsai, C.C. Tung, J.W. Yeh, T.T. Shun, C.C. Yang, S.K. Chen, Ann. Chim. Sci. Mat. 31, 685 (2006)CrossRefGoogle Scholar
  26. 26.
    Z.G. Zhu, K.H. Ma, Q. Wang, C.H. Shek, Intermetallics 79, 1 (2016)CrossRefGoogle Scholar
  27. 27.
    S. Wong, T. Shun, C. Chang, C. Lee, Mater. Chem. Phys. 210, 146 (2018)CrossRefGoogle Scholar
  28. 28.
    Y. Shi, B. Yang, X. Xie, J. Brechtl, K.A. Dahmen, P.K. Liaw, Corros. Sci. 119, 33 (2017)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  • Xu Chen
    • 1
    • 2
  • Di Gao
    • 1
    • 2
  • Jia Xuan Hu
    • 1
    • 2
  • Ye Liu
    • 1
    • 2
    Email author
  • Chang Ping Tang
    • 3
  1. 1.Key Laboratory of Materials Design and Preparation Technology of Hunan Province, School of Materials Science and EngineeringXiangtan UniversityXiangtanPeople’s Republic of China
  2. 2.Hunan Provincial Key Laboratory of Thin Film Materials and Devices, School of Materials Science and EngineeringXiangtan UniversityXiangtanPeople’s Republic of China
  3. 3.School of Materials Science and EngineeringHunan University of Science and TechnologyXiangtanPeople’s Republic of China

Personalised recommendations