Advertisement

Metals and Materials International

, Volume 25, Issue 5, pp 1258–1271 | Cite as

Correlation Study Between Material Parameters and Mechanical Properties of Iron–Carbon Compacts Using Sensitivity Analysis and Regression Model

  • Da Seul Shin
  • Suk Hyun Kim
  • Joo Won Oh
  • Im Doo Jung
  • Woo Seok Yang
  • Chi Hun Lee
  • Hyeok Joon Kwon
  • Jin Mo Koo
  • Seong Jin ParkEmail author
Article
  • 85 Downloads

Abstract

Changing the material parameters such as powder characteristics and additives affects the final properties of an iron–carbon alloy. This study investigated the influences of three typical material parameters, iron particle size, graphite addition, and powder lubricant addition, on the density and mechanical properties of an iron–carbon alloy formed via powder compaction and sintering. Each material parameter was designed with five levels, and all of the powder mixtures were compacted under 500 MPa and sintered at 1120 °C for 30 min. The microstructure of the samples was observed for the green part and sintered part. Through the tensile test, yield strength, ultimate tensile strength, and elongation were measured. The tensile fracture surface was also examined to understand the changes in mechanical properties according to the parameters. The correlations between mechanical properties and material parameters were characterized by the mapping functions, and a sensitivity analysis was carried out to investigate which parameter had the larger influence on the mechanical properties. The results showed that graphite addition has the greatest influence on the mechanical properties due to the microstructural changes from hypoeutectoid structure to hypereutectoid structure. Further, a regression model was developed to describe the mechanical response of the iron–carbon alloy depending on the material conditions.

Keywords

Powder metallurgy Powder compaction Iron–graphite Mechanical properties Regression model 

Notes

Acknowledgements

This work was supported by POSCO (2015Y005) and the National Research Foundation of Korea (NRF) Grant funded by the Ministry of Education (NRF-2013R1A1A2013765).

References

  1. 1.
    M. Eudier, Powder Met. 9, 278 (1962)CrossRefGoogle Scholar
  2. 2.
    S. Takaki, T. Tsuchiyama, K. Nakashima, H. Hidaka, K. Kawasaki, Y. Futamura, Met. Mater. Int. 10(6), 533 (2004)CrossRefGoogle Scholar
  3. 3.
    G. Hutiu, V.-F. Duma, D. Demian, A. Bradu, A. Podoleanu, Metals 8, 117 (2018)CrossRefGoogle Scholar
  4. 4.
    F. Li, H. Huang, J. Univ. Sci. Technol. Beijing Miner. Metall. Mater. 13, 504 (2006)Google Scholar
  5. 5.
    M.S. Devgun, A.J. Carrillo, T.A. Roosen, Mater. Sci. Eng. 59, 49 (1983)CrossRefGoogle Scholar
  6. 6.
    K.S. Narasimhan, Mater. Chem. Phys. 67, 56 (2001)CrossRefGoogle Scholar
  7. 7.
    S. Narayan, A. Rajeshkannan, J. Iron Steel Res. Int. 18, 33 (2011)CrossRefGoogle Scholar
  8. 8.
    J.H. Jeong, S.K. Ryu, S.J. Park, H.C. Shin, J.H. Yu, Comput. Mater. Sci. 100, 21 (2015)CrossRefGoogle Scholar
  9. 9.
    S. Ekşi, S. Saritaş, Turkish J. Eng. Environ. Sci. 26, 377 (2002)Google Scholar
  10. 10.
    H. Danninger, G. Frauendienst, K.D. Streb, R. Ratzi, Mater. Chem. Phys. 67, 72 (2001)CrossRefGoogle Scholar
  11. 11.
    A. Simchi, Mater. Des. 24, 585 (2003)CrossRefGoogle Scholar
  12. 12.
    P.G. Esteban, Y. Thomas, E. Baril, E.M. Ruiz-Navas, E. Gordo, Met. Mater. Int. 17(1), 45 (2011)CrossRefGoogle Scholar
  13. 13.
    ASTM, ASTM E8: standard test methods for tension testing of metallic materials (ASTM Int, West Conshohocken, 2002)Google Scholar
  14. 14.
    S.H. Chung, Y.-S. Kwon, S.J. Park, R.M. German, Met. Process Simul. 22, 323 (2010)Google Scholar
  15. 15.
    J.A. Lund, Int. J. Powder Metall. 18(2), 117 (1982)Google Scholar
  16. 16.
    N. Chawla, X. Deng, Mater. Sci. Eng. A 390, 98 (2005)CrossRefGoogle Scholar
  17. 17.
    T. Sheppard, H.B. McShane, Powder Metall. 23(3), 120 (1980)CrossRefGoogle Scholar
  18. 18.
    E.O. Hall, Proc. R. Soc. 64(9), 747 (1951)Google Scholar
  19. 19.
    J.W. Oh, R. Bollina, W.S. Lee, S.J. Park, Powder Technol. 302, 168 (2016)CrossRefGoogle Scholar
  20. 20.
    W.D. Callister, D.G. Rethwisch, Materials Science and Engineering: An Introduction (Wiley, New York, 2007), pp. 287–302Google Scholar
  21. 21.
    N.A. Fleck, R.A. Smith, Powder Metall. 24, 121 (1981)CrossRefGoogle Scholar
  22. 22.
    F. Sánchez, A.M. Bolarín, P. Molera, J.E. Mendoza, M. Ocampo, Rev. LatinAm. Met. Mat. 23, 35 (2003)Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  • Da Seul Shin
    • 1
  • Suk Hyun Kim
    • 1
  • Joo Won Oh
    • 1
  • Im Doo Jung
    • 2
  • Woo Seok Yang
    • 1
  • Chi Hun Lee
    • 1
  • Hyeok Joon Kwon
    • 1
  • Jin Mo Koo
    • 3
  • Seong Jin Park
    • 1
    Email author
  1. 1.Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
  2. 2.Department of Powder TechnologyKorea Institute of Materials Science (KIMS)ChangwonRepublic of Korea
  3. 3.Materials Performance Research GroupPohang Iron and Steel Company (POSCO)IncheonRepublic of Korea

Personalised recommendations