Metals and Materials International

, Volume 25, Issue 5, pp 1191–1201 | Cite as

Failure Analysis of a Water Wall Boiler Tube for Power Generation in a District Heating System

  • Minki Hong
  • Hobyung Chae
  • Woo Cheol Kim
  • Jung-Gu Kim
  • Heesan Kim
  • Soo Yeol LeeEmail author


Corrosion failure of materials often exposed to the corrosive environment in district heating systems is critical for operation and maintenance of the facility. It is important to establish a prevention method from an accurate prognosis on the cause of the corrosion failure. In this study, a failure analysis on the water wall boiler tube in a district heating system was carried out. The fracture occurred in an open window shape with a significant internal wall thinning that formed Na- and Fe-oxide by caustic corrosion. Tensile residual stress in the hoop direction developed inside the tube weakened the protective magnetite layer by accelerating the caustic corrosion, from which hydrogen atoms diffused into the alloy forming cavities or micro-voids at the grain boundaries. Furthermore, high temperature creep promoted the evolution of the cavities only inside the tube where there were tensile residual stresses. Consequently, a combination of hydrogen embrittlement and thermal creep initiated the cracks at the grain boundaries inside the tube, and the cracks propagated at the grain boundaries along the axial direction exhibiting an intergranular feature on the inside. Then, it gradually propagated toward the outside, finally exhibiting a transgranular fracture mode on the outside.


District heating system Boiler tube Caustic corrosion Stress corrosion cracking Hydrogen embrittlement 



This work was supported by Korea District Heating Corporation. SYL was supported by a National Research Foundation (NRF) Grant funded by the Korean government (No. 2016R1A2B4015701, No. 2017K1A3A7A09016308).


  1. 1.
    H. Lund, B. Moller, B.V. Mathiesen, A. Dyrelund, Energy 35, 1381 (2010)CrossRefGoogle Scholar
  2. 2.
    H. Lund, S. Werner, R. Wiltshire, S. Svendsen, J.E. Thorsen, F. Hvelplund, B.V. Mathiesen, Energy 68, 1 (2014)CrossRefGoogle Scholar
  3. 3.
    B. Rezaie, M.A. Rosen, Appl. Energy 93, 2 (2012)CrossRefGoogle Scholar
  4. 4.
    S. Ghafghazi, T. Sowlati, S. Sokhansanj, S. Melin, Appl. Energy 87, 1134 (2010)CrossRefGoogle Scholar
  5. 5.
    J. Ahmad, J. Purbolaksono, L.C. Beng, A.Z. Rashid, A. Khinani, A.A. Ali, Eng. Fail. Anal. 16, 2325 (2009)CrossRefGoogle Scholar
  6. 6.
    M.M. Rahman, J. Purbolaksono, J. Ahmad, Eng. Fail. Anal. 17, 1490 (2010)CrossRefGoogle Scholar
  7. 7.
    P. Munda, M.M. Husain, V. Rajinikanth, A.K. Metya, J. Fail, Anal. Prev. 18, 199 (2018)CrossRefGoogle Scholar
  8. 8.
    J. Ahmad, J. Purbolaksono, L.C. Beng, Eng. Fail. Anal. 17, 334 (2010)CrossRefGoogle Scholar
  9. 9.
    D. Luder, B. Erenburg, E. Iskevitch, S. Ariely, M. Yalin, Eng. Fail. Anal. 84, 196 (2018)CrossRefGoogle Scholar
  10. 10.
    M. Dorri, D. Harandizadeh, Eng. Fail. Anal. 19, 87 (2012)CrossRefGoogle Scholar
  11. 11.
    F.D. Fatah, A. Mostafaei, R.H. Taghani, F. Nasirpouri, Eng. Fail. Anal. 28, 69 (2013)CrossRefGoogle Scholar
  12. 12.
    M.R. Khajavi, A.R. Abdolmaleki, N. Adibi, S. Mirfendereski, Eng. Fail. Anal. 14, 731 (2007)CrossRefGoogle Scholar
  13. 13.
    M.B. Djukic, V.S. Zeravcic, G.M. Bakic, A. Sedmak, B. Rajicic, Eng. Fail. Anal. 58, 485 (2015)CrossRefGoogle Scholar
  14. 14.
    R. Bakhtiari, S. Zangeneh, Eng. Fail. Anal. 90, 231 (2018)CrossRefGoogle Scholar
  15. 15.
    D.H. Jeong, W.J. Jung, Y.J. Kim, M. Goto, S.S. Kim, Metals Mater. Int. 21, 785 (2015)CrossRefGoogle Scholar
  16. 16.
    M.A. Mohtadi-Bonab, M. Eskandari, R. Karimdadashi, J.A. Szpunar, Metals Mater. Int. 23, 726 (2017)CrossRefGoogle Scholar
  17. 17.
    C.A. Duarte, E. Espejo, J.C. Martinez, Eng. Fail. Anal. 79, 704 (2017)CrossRefGoogle Scholar
  18. 18.
    S. Xu, C. Wang, W. Wang, Eng. Fail. Anal. 51, 1 (2015)CrossRefGoogle Scholar
  19. 19.
    V.S. Raja, T. Shoji, Stress Corrosion Cracking: Theory and Practice (Woodhead Publishing Limited, Cambridge, 2011), pp. 223–224CrossRefGoogle Scholar
  20. 20.
    M. Koyama, C.C. Tasan, E. Akiyama, K. Tsuzaki, D. Raabe, Acta Mater. 70, 174 (2014)CrossRefGoogle Scholar
  21. 21.
    P. Novak, R. Yuan, B.P. Somerday, P. Sofronis, R.O. Ritchie, J. Mech. Phys. Solids 58, 206 (2010)CrossRefGoogle Scholar
  22. 22.
    G.R. Odette, S.S. Vagarali, Metall. Trans. A 13A, 299 (1982)CrossRefGoogle Scholar
  23. 23.
    B. Panda, P. Shewmon, Metall. Mater. Trans. A 15A, 487 (1984)CrossRefGoogle Scholar
  24. 24.
    P.G. Shewmon, Mater. Sci. Technol. 1, 1 (1985)CrossRefGoogle Scholar
  25. 25.
    S.C. Bose, S.V. Reddy, K. Singh, Corrosion 56, 1158 (2000)CrossRefGoogle Scholar
  26. 26.
    S.M. Schlogl, Y.V. Leeuwen, E.V.D. Giessen, Metall. Mater. Trans. A 31A, 125 (2000)CrossRefGoogle Scholar
  27. 27.
    A.H. Bagheri, S. Nasrazadani, H. Bostanci, J. Fail, Anal. Prev. 17, 417 (2017)CrossRefGoogle Scholar
  28. 28.
    J. Woodtli, R. Kieselbach, Eng. Fail. Anal. 7, 427 (2000)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  • Minki Hong
    • 1
  • Hobyung Chae
    • 1
  • Woo Cheol Kim
    • 2
  • Jung-Gu Kim
    • 3
  • Heesan Kim
    • 4
  • Soo Yeol Lee
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringChungnam National UniversityDaejeonRepublic of Korea
  2. 2.Frontier Research & Training InstituteKorea District Heating Corp.YonginRepublic of Korea
  3. 3.School of Advanced Materials Science and EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
  4. 4.Department of Materials Science and EngineeringHongik UniversitySejongRepublic of Korea

Personalised recommendations