Metals and Materials International

, Volume 25, Issue 1, pp 147–158 | Cite as

Dynamic Recrystallization and Grain Refinement in Extruded AZ31 Rod During Hot Torsion Deformation at 150 °C

  • Hongbing Chen
  • Bo SongEmail author
  • Ning Guo
  • Tingting Liu
  • Tao Zhou
  • Jiejun He


The dynamic recrystallization mechanism and microstructure evolution in an extruded AZ31 rod during hot torsion deformation at 150 °C were investigated. It indicated that several dynamic recrystallization mechanisms were initiated during hot torsion deformation, including discontinuous DRX (DDRX), continuous DRX (CDRX) and twinning induced DRX (TDRX). With increasing strain, CDRX became the dominant DRX mechanism and contributed to a remarkable refinement of grains. A gradient distribution of dynamic recrystallization grains on the cross section of samples generated due to the gradient shear strain in twisted samples. Hot torsion can also arouse the c-axis of grains to rotate towards the extrusion direction. From low strain to high strain, the recrystallized grains exhibited a similar texture development with the deformed grains. The relevant mechanisms were revealed.


Magnesium alloys Hot torsion Dynamic recrystallization Texture 



This project was financially supported by the Fundamental Research Funds for the Central Universities (SWU117002), the National Natural Science Foundation of China (51601154 and 51501045) and Natural Science Foundation of Guizhou Province (Grant No. [2015] 2067).


  1. 1.
    S.Q. Zhu, H.G. Yan, X.Z. Liao, S.J. Moody, G. Sha, Y.Z. Wu, S.P. Ringer, Acta Mater. 82, 344 (2015)CrossRefGoogle Scholar
  2. 2.
    S.G. Hong, S.H. Park, C.S. Lee, Acta Mater. 58, 5873 (2010)CrossRefGoogle Scholar
  3. 3.
    Q. Ma, B. Li, W.R. Whittington, A.L. Oppedal, P.T. Wang, M.F. Horstemeyer, Acta Mater. 67, 102 (2014)CrossRefGoogle Scholar
  4. 4.
    M. Park, K. Okayasu, H. Fukutomi, K. Kim, Met. Mater. Int. 22, 1129 (2016)CrossRefGoogle Scholar
  5. 5.
    K. Ahn, H.J. Lee, J. Yoon, Mater. Sci. Eng. A 651, 1010 (2016)CrossRefGoogle Scholar
  6. 6.
    B. Srinivasarao, N.V. Dudamell, M.T. Pérez-Prado, Mater. Charact. 75, 101 (2013)CrossRefGoogle Scholar
  7. 7.
    K.D. Molodov, T. Al-Samman, D.A. Molodov, G. Gottstein, Acta Mater. 76, 314 (2014)CrossRefGoogle Scholar
  8. 8.
    Z. Cai, F. Chen, F. Ma, J. Guo, J. Alloy. Compd. 670, 55 (2016)CrossRefGoogle Scholar
  9. 9.
    Y. Xu, L. Hu, Y. Sun, J. Alloy. Compd. 580, 262 (2013)CrossRefGoogle Scholar
  10. 10.
    R.K.A. Galiyev, G. Gottstein, Acta Mater. 49, 1199 (2001)CrossRefGoogle Scholar
  11. 11.
    J. Zhang, B. Chen, C. Liu, Mater. Sci. Eng. A 612, 253 (2014)CrossRefGoogle Scholar
  12. 12.
    M. Wang, R. Xin, B. Wang, Q. Liu, Mater. Sci. Eng. A 528, 2941 (2011)CrossRefGoogle Scholar
  13. 13.
    J. Su, M. Sanjari, A.S.H. Kabir, I.H. Jung, S. Yue, Scr. Mater. 113, 198 (2016)CrossRefGoogle Scholar
  14. 14.
    Z.Y. Liu, T.T. Huang, W.J. Liu, S. Kang, T. Nonferr, Metal. Soc. 26, 378 (2016)Google Scholar
  15. 15.
    S. Biswas, B. Beausir, L.S. Toth, S. Suwas, Acta Mater. 61, 5263 (2013)CrossRefGoogle Scholar
  16. 16.
    B.T. Beausir, L.S.S. Tóth, F. Qods, K.W. Neale, J. Eng. Mater. Technol. 131, 011108 (2009)CrossRefGoogle Scholar
  17. 17.
    N. Guo, B. Luan, Q. Liu, Mater. Des. 50, 285 (2013)CrossRefGoogle Scholar
  18. 18.
    R.K. Sabat, D. Panda, S.K. Sahoo, Mater. Charact. 126, 10 (2017)CrossRefGoogle Scholar
  19. 19.
    J. Liu, Z. Cui, C. Li, Comp. Mater. Sci. 41, 375 (2008)CrossRefGoogle Scholar
  20. 20.
    E.I. Poliak, J.J. Jonas, Acta Mater. 44, 127 (1996)CrossRefGoogle Scholar
  21. 21.
    H. Chen, T. Liu, H. Yu, B. Song, D. Hou, N. Guo, Adv. Eng. Mater. 18, 1683 (2016)CrossRefGoogle Scholar
  22. 22.
    H. Chen, T. Liu, Y. Zhang, Y. Zhai, J. He, Mater. Sci. Tech. 32, 111 (2015)CrossRefGoogle Scholar
  23. 23.
    B. Song, H. Zhao, L. Chai, N. Guo, H. Pan, H. Chen, Met. Mater. Int. 22, 887 (2016)CrossRefGoogle Scholar
  24. 24.
    N. Guo, B. Song, C. Guo, R. Xin, Q. Liu, Mater. Des. 83, 270 (2015)CrossRefGoogle Scholar
  25. 25.
    B. Song, H. Pan, L. Chai, N. Guo, H. Zhao, R. Xin, Mater. Sci. Eng. A 689, 78 (2017)CrossRefGoogle Scholar
  26. 26.
    S.M. Fatemi-Varzaneh, A. Zarei-Hanzaki, H. Beladi, Mater. Sci. Eng. A 456, 52 (2007)CrossRefGoogle Scholar
  27. 27.
    B. Song, N. Guo, R. Xin, H. Pan, C. Guo, Mater. Sci. Eng. A 650, 300 (2016)CrossRefGoogle Scholar
  28. 28.
    K.D. Molodov, T. Al-Samman, D.A. Molodov, Acta Mater. 124, 397 (2017)CrossRefGoogle Scholar
  29. 29.
    B. Beausir, L.S. Tóth, K.W. Neale, Acta Mater. 55, 8 (2007)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Hongbing Chen
    • 1
  • Bo Song
    • 2
    Email author
  • Ning Guo
    • 2
  • Tingting Liu
    • 2
  • Tao Zhou
    • 3
  • Jiejun He
    • 4
  1. 1.College of Engineering and TechnologySouthwest UniversityChongqingPeople’s Republic of China
  2. 2.Faculty of Materials and EnergySouthwest UniversityChongqingPeople’s Republic of China
  3. 3.College of Material Science and EngineeringChongqing University of TechnologyChongqingPeople’s Republic of China
  4. 4.School of Materials and Metallurgical EngineeringGuizhou Institute of TechnologyGuizhouPeople’s Republic of China

Personalised recommendations