Skip to main content
Log in

Solubility of TiO2 in NaF-CaF2-BaF2 Melts

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The solubility of TiO2 in NaF-CaF2-BaF2 ternary eutectic melts was investigated at the temperature range of 1025–1150 °C. The least-squares equation was obtained from the relationship between the reciprocal temperature and the natural logarithm of the titanium concentration in the melts saturated with TiO2. The corresponding partial molar enthalpy of dissolution of TiO2 was found to be 188 kJ/mol. The titanium saturation concentration was 3.73 wt% at 1100 °C. From the titanium concentration change with the added amount of TiO2 at different holding time after a final stirring, it was found that not only complete dissolution of TiO2 but also enough sedimentation of excessive TiO2 should be guaranteed to obtain more reliable solubility data. The holding time of 10 h was found to be enough for the excessive TiO2 particles to settle down in our experimental conditions. It is noteworthy that in case of adding TiO2 in excess of its solubility, the Ba1.12(Ti8O16) phase was observed at the lower and bottom of the solidified salt ingots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Veiga, J.P. Davim, A.J.R. Loureiro, Rev. Adv. Mater. Sci. 32, 133 (2012)

    CAS  Google Scholar 

  2. W.G. Seo, D.H. Jeong, D.J. Lee, H.K. Sung, Y.N. Kwon, S.S. Kim, Met. Mater. Int. 23, 648 (2017)

    Article  CAS  Google Scholar 

  3. C. Velotti, A. Astarita, C. Leone, S. Genna, F.M.C. Minutolo, A. Squillace, Procedia CIRP 41, 975 (2016)

    Article  Google Scholar 

  4. Y.H. Jo, Y.H. Kim, Y.J. Jo, J.G. Seong, S.Y. Chang, P.J. Reucroft, S.B. Kim, W.H. Lee, Met. Mater. Int. 21, 337 (2015)

    Article  CAS  Google Scholar 

  5. S. Delaye, P. Streeter, E. Morales, P. Wood, T. Senior, J. Hart, T. Allen, Procedia Eng. 147, 354 (2016)

    Article  Google Scholar 

  6. R.J. Anderson, J. Franklin Inst. 184, 469 (1917)

    Article  CAS  Google Scholar 

  7. G.M. Bedinger, Mineral Commodity Summaries (US Geological Survey, Reston, Virginia, 2017), p. 178

    Google Scholar 

  8. W. Kroll, J. Franklin Inst. 260, 169 (1955)

    Article  CAS  Google Scholar 

  9. C. Henry, CSIRO Titanium Technologies and Additive Manufacturing, http://www.csiro.au. Accessed 31 May 2018

  10. W. Kroll, J. Electrochem. Soc. 78, 35 (1940)

    Article  Google Scholar 

  11. W.E. Dunn, Metall. Trans. B 10, 271 (1979)

    Article  Google Scholar 

  12. W. Zhang, Z. Zhu, C.Y. Cheng, Hydrometallurgy 108, 177 (2011)

    Article  CAS  Google Scholar 

  13. K. Nikami, T.H. Okabe, K. Ono, Shigen-to-Sozai 118, 529 (2002)

    Article  CAS  Google Scholar 

  14. H. Zheng, H. Ito, T.H. Okabe, Mater. Trans. 48, 2244 (2007)

    Article  CAS  Google Scholar 

  15. S.J. Kim, J.M. Oh, J.W. Lim, Met. Mater. Int. 22, 658 (2016)

    Article  CAS  Google Scholar 

  16. R.O. Suzuki, J. Phys. Chem. Solids 66, 461 (2005)

    Article  CAS  Google Scholar 

  17. K. Ono, Mater. Trans. 45, 1660 (2004)

    Article  CAS  Google Scholar 

  18. T. Abiko, I. Park, T.H. Okabe, in Proceedings of 10th World Conference on Titanium, Hamburg, Germany, 2003, p. 253

  19. G.Z. Chen, D.J. Fray, T.W. Farthing, Nature 407, 361 (2000)

    Article  CAS  Google Scholar 

  20. H.S. Shin, J.M. Hur, S.M. Jeong, K.Y. Jung, J. Ind. Eng. Chem. 18, 438 (2012)

    Article  CAS  Google Scholar 

  21. ACerS-NIST Phase Equilibria Diagrams PC Database, Ver. 4.1 (ACerS/NIST, Westerville/Gaithersburg, 2016)

  22. V.N. Pavlikov, V.A. Yurchenko, E.S. Lugovskaya, L.M. Lopato, S.G. Tresvyatskii, Zh. Neorg. Khim. 20, 3076 (1975); Russ. J. Inorg. Chem. (Engl. Transl.) 20, 1702 (1975)

  23. L. Hillert, Acta Chem. Scand. 19, 1516 (1965)

    Article  CAS  Google Scholar 

  24. G.A. Bukhalova, V.T. Berezhnaya, A.G. Bergman, Zh. Neorg. Khim. 6, 2359 (1961); Russ. J. Inorg. Chem. (Engl. Transl.) 6, 1196 (1961)

  25. E.T. Turkdogan, Physical Chemistry of High Temperature Technology (Academic Press Inc, 1980)

  26. X.M. Nie, L.Y. Dong, C.G. Bai, D.F. Chen, G.B. Qiu, Trans. Nonferrous Met. Soc. China 16, 723 (2006)

    Article  Google Scholar 

  27. Powder Diffraction Files: Card No. 77-0883, Database Edition (The International Center for Diffraction Data (ICDD), 2011)

  28. D.S. Filimonov, Z.K. Liu, C.A. Randall, Mater. Res. Bull. 38, 545 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Research Project of the Korea Institute of Geoscience and Mineral Resources (KIGAM) funded by the Ministry of Science and ICT of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Wook Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoo, JH., Cho, SW. Solubility of TiO2 in NaF-CaF2-BaF2 Melts. Met. Mater. Int. 24, 1386–1393 (2018). https://doi.org/10.1007/s12540-018-0156-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-0156-x

Keywords

Navigation